
NoSQL Performance when Scaling by RAM
Benchmarking Cassandra, Couchbase,
and MongoDB for RAM-heavy Workloads

CONTENTS

Test Design &
 Methdology

6 - 12
Results

13
Conclusion

4 - 6

3 - 4
Overview

3

In this study, we attempted to quantify how three of the most popular NoSQL databases scaled as
more hardware was added to a cluster. The purpose was not to give an exhaustive answer on the
scaling properties of different databases, but to address the primary reason why many companies will
be choosing a NoSQL database: the ability to transparently and inexpensively scale up horizontally by
adding hardware instead of vertically increasing processing power on a RDBMS.

We performed the studies using the YCSB benchmarking tool, which was developed originally by Ya-
hoo to measure key-value storage performance and extended by Lineate to support added capacity
and parallelization. We used this tool because most NoSQL benchmarks have been performed with it,
and we wanted our results to be as comparable as possible to other studies.

NoSQL databases optimize performance by making different tradeoffs and assumptions about the
workload. The configuration we chose to measure was the use case where the vast majority of data
could fit into a server’s RAM, but eventually persisted to disk. In our experience this is a common use
case for companies servicing large request volumes, and we see it commonly used in things like user
session storage, cookie matching, and application synchronization. There are other scaling strategies
that can be better for other kinds of workloads or application needs, such as scaling by disk instead
of RAM, scaling with strong durability guarantees, and others. Those are outside the scope of the
research we performed.

This study was commissioned and subsidized by Couchbase. Lineate occasionally accepts outside
funding to perform research activities that have substantial cost. In such cases, Lineate retains full
independence in designing tests and interpreting results. When we perform such tests, we reach out
to all the vendors involved in an attempt to present them as well as possible within the constraints of
the test. Couchbase had no control over the test process other than offering guidance at maximizing
Couchbase performance. At the same time, it is should also be noted that Couchbase would not have
requested a study of a scaling strategy it would not do well on.

OVERVIEW

4

Our hypothesis was that all three databases would scale at a near linear rate when operating under
reasonably similar configurations. Since this was a test of raw key-value performance of primarily
RAM-based datasets, we expected Couchbase to perform particularly well given its origins in Mem-
base and memcached. Our goal was to measure how much traffic could be served at different hard-
ware tiers while keeping latency at a reasonable level.

Databases Tested
Apache Cassandra 2.0.9, Couchbase 2.5.1, and MongoDB 2.6.4

Test Plan
It was important that the tests be transparent and externally reproducible, so we took a systematic
approach towards defining the test steps.

Provision and Verify Clients and Servers

1. Configure the client and server hardware software according to vendor recommendations

2. Run a smoke test from a single client to determine baseline numbers

3. Increase traffic load

4. Make sure that network will not be the bottleneck for the cluster performance

5. Make sure that we measure maximum throughput

6. Make sure that client CPU or network is not artificially increasing latency

Rationale
Lineate has done a number of studies of NoSQL databases over the past two years, studying things
like raw performance, failover behavior, cross datacenter replication, and effects of latency on even-
tual consistency. The purpose of these studies is to give insight into how these databases should be
expected to perform by creating synthetic workloads to illustrate different properties. While no syn-
thetic test can perfectly reproduce what happens in production, we feel that our tests have matched
well with how we’ve seen these systems perform in the real world.

Database Categorization
We tried to measure here is how linearly the databases scaled. While not the only reason to use a
NoSQL database (shortened development cycles is another major factor), it is the one that we at
Lineate encounter the most. Our clients tend to jump to NoSQL when they’ve exceeded their ability
to scale using more traditional technologies, and so our concern was measuring what this raw scal-
ing behavior would mean (in the in-memory case). As such, we designed our tests purely around
the Key-Value storage capabilities of each database instead of focusing on additional features such
as document indexing or column features which are not directly comparable. Those features can be

TEST DESIGN & METHODOLOGY

5

Run the Read-Heavy Workload on a 4-node Cluster

1. Reload database and populate a 20M record dataset by inserting one record at a time

2. Wait for the database to finish rebalancing

3. Clear the caches

4. Start all client YCSB nodes concurrently using the Read-Heavy Workload

5. Warm-up for 1 minute for the database to hit a steady state

6. Run the current load for 5 minutes under a consistent number of client threads

7. Incrementally increase the number of threads per client, running for 5 minutes per increment
(steps 3 to 6)

Run the Balanced Workload on a 4-node Cluster
Do the same steps precisely, but for the Balanced Workload.

Repeat for Other Cluster Sizes
Run the same workloads (with appropriately scaled workloads) for other cluster sizes.

Repeat for Other Databases
Repeat all prior steps for each database.

Server Configurations
We initially planned to test both on bare metal and virtualized environments. The bare metal environ-
ment would obviously provide more consistent numbers, but the virtualized environment could show
scaling behavior more linearly. However, we were unable to get consistent enough behavior to draw
conclusions on either virtualized or collocated bare metal hardware. Therefore we measured perfor-
mance on 4-, 6-, and 8-node clusters under our own full control, along with 32 client machines.

Database Configurations
A key consideration in benchmarking something as diverse as NoSQL databases is always to try to
create as much of an apples-to-apples comparison as possible. This is easier said than done, since
each NoSQL database makes different tradeoffs in its design considerations. Here are some of the
assumptions we made.

• Both MongoDB and Couchbase trade durability for speed, while Cassandra trades consisten-
cy for speed. Since we were trying to measure maximum throughput, we ran Cassandra in
Read.ONE / Write.ONE mode, which yields the highest numbers

• Cassandra was thus on par with MongoDB and Couchbase in terms of replication of
data (a single node failure results some data loss)

• MongoDB and Couchbase offered immediate consistency in this configuration, where-
as Cassandra offered eventual consistency

6

• We replicate each piece of data to two servers for each database

• For Cassandra, a replication factor of 2 is not normally preferred, because it means
there can be no quorum reads or writes. Since we were using only inconsistent reads
and writes, we elected to for replication parity so that equivalent amounts of hardware
could be used.

• MongoDB is normally configured by replica sets, each of which has a Master and one
or more Slaves. Since slaves don’t participate in serving traffic, we configured each
node (at MongoDB’s suggestion) as both a Master for one replica set and a Slave for
another, in order to make sure all nodes were serving traffic.

• MongoDB and Couchbase are faster at reads, and Cassandra is faster at writes, so we test
two workloads:

• 95% read / 5% write

• 50% read / 50% write

• For Cassandra:

• The data were collected using DataStax Cassandra Java Driver with TokenAware policy
enabled.

• DataStax recommends using the CQL3 driver instead of the Thrift driver. Our experi-
ence suggested that throughput was slightly higher but with increased latency when
using CQL3, so we reported the (better) Thrift results. Further study is warranted.

Our results showed that Couchbase performed quite well, as we expected for this RAM-based use
case.

RESULTS

THROUGHPUT BY CLUSTER SIZE 95% READ / 5% WRITE

op
s

/
se

c 4 Nodes

6 Nodes

8 Nodes

Cassandra 2.0.9 MongoDB 2.6.4

Cluster size Cassandra Couchbase MongoDB

4 Nodes 60,281 903,430 130,998

6 Nodes 72,983 1,284,336 194,831

8 Nodes 99,089 1,878,120 227,467

1800000

1600000

1400000

1200000

1000000

800000

600000

400000

200000

0
Couchbase 2.5.1

7

THROUGHPUT BY CLUSTER SIZE 50% READ / 50% WRITE

AVERAGE LATENCY 95% READ / 5% WRITE

op
s

/
se

c
M

ill
is

ec
on

d
s

4 Nodes

6 Nodes

8 Nodes

4 Nodes

6 Nodes

8 Nodes

Cassandra 2.0.9 Couchbase 2.5.1 MongoDB 2.6.4

MongoDB 2.6.4

Cluster size Cassandra Couchbase MongoDB

4 Nodes 53,896 800,660 50,120

6 Nodes 67,427 1,013,841 68,384

8 Nodes 89,728 1,246,967 85,928

Cluster size Cassandra Couchbase MongoDB

4 Nodes 2.173557066 1.477351476 0.781675911

6 Nodes 1.949606279 0.891571832 0.838519234

8 Nodes 2.656504164 0.900483548 0.743169516

1400000

1200000

1000000

800000

600000

400000

200000

0

3

2.5

2

1.5

1

0.5

0

Latency

Latency is trickier to measure than throughput, because as load increases, latency tends to increase
as well. Latency is best measured relative to throughput being achieved for the particular database.
At the same time, we do want to compare results because latency is of critical importance when
choosing a database.

Consider the case where a database has a fixed capacity of 100,000 operations per second. Dou-
bling the number of threads connecting to this database will not increase throughput, so the result is
that each thread will wait twice as long to service the same request. Often it’s possible to squeeze out
a few thousand more transactions per second at the cost of a large spike in latency. So which is the
correct result to measure?

For our results, we chose the latency number that was in effective before it started to rise rapidly in or-
der to squeeze in the last bit of throughput. This was an inherently subjective choice, but it’s one that
any user of these systems will make when performing capacity planning.

Cassandra 2.0.9 Couchbase 2.5.1

8

AVERAGE LATENCY 50% READ / 50% WRITE

M
ill

is
ec

on
d

s

4 Nodes

6 Nodes

8 Nodes

MongoDB 2.6.4

Cluster size Cassandra Couchbase MongoDB

4 Nodes 0.8879 1.9841 2.0985

6 Nodes 0.6793 1.9103 2.1711

8 Nodes 0.9940 1.9813 1.8555

2.5000

2.0000

1.5000

1.0000

0.5000

0.0000

Cassandra 2.0.9 Couchbase 2.5.1

Scalability
In a perfect world, doubling hardware will double throughput, but of course systems tend to scale less
than perfectly linearly. We created a scalability score that represents how well a database scaled
from 4 to 8 nodes. It was the average of the scaling score from 4 to 6 and from 4 to 8 nodes. The
details are summarized below.

* The average of the two scores, normalized for 100% = purely linear scaling

Read Heavy Workload Scaling 4 to 6 Scaling 4 to 8 Average Efficiency
(out of 100%)*

Cassandra 2.0.9 21.07% 64.38% 53.26%

Couchbase 2.5.1 42.16% 89.57% 86.95%

MongoDB 2.6.4 48.73% 73.64% 85.55%

Balanced Workload Scaling 4 to 6 Scaling 4 to 8 Average Efficiency
(out of 100%)*

Cassandra 2.0.9 25.10% 66.48% 58.35%

Couchbase 2.5.1 26.63% 55.74% 54.50%

MongoDB 2.6.4 36.44% 71.44% 72.16%

9

For heavy-read workloads (95% read, 5% write), both Couchbase and MongoDB scale close to linear-
ly. For Cassandra, the answer is less clear, as the last two nodes had more impact than the first 2. A
cluster size of 4 is not common for Cassandra installations.

For balanced workloads (50% read, 50% write), MongoDB showed the best scaling behavior. Couch-
base and Cassandra both show scaling at about half of linear capacity throughout. Cassandra actual-
ly scales slightly better for the balanced workload.

Test Repeatability
We repeated tests in the final configuration two times to ensure results are stable. Maximum differ-
ence of throughput for the same conditions we saw was 4.5%.

Heavy Read Workload — Details

10

11

Balanced Workload — Details

12

13

All three databases were relatively simple to scale by adding nodes to the cluster (though MongoDB
took a while to replicate.) As we expected, none of the databases scaled completely linearly, though
Couchbase and MongoDB both came quite close in the Read Heavy case. Cassandra showed the
most consistency across workloads, which was not unexpected given the write-optimized nature of
Cassandra.

Couchbase dominated in terms of raw performance, which was consistent with our prior tests and
with our expectations for RAM-heavy configurations. This is Couchbase’s sweet spot and it per-
formed as both Couchbase and Lineate expected it would.

Scaling is of course a complicated topic, and we measured only 4, 6, and 8 node clusters. It would be
very interesting to examine scaling behavior to significantly larger cluster sizes, and would dramat-
ically strengthen our conclusions on linear scalability. As discussed earlier, such a test is difficult to
do using virtualized hardware, and given that this existing test used 40 or more dedicated machines,
scaling much further would be impractical from a cost perspective.

There are several important dimensions that have not been explored in this study. A major one is
examining the strategy of scaling data by disk instead of RAM. Configurations where the amount of
data stored greatly exceeds RAM and where the cache hit ratio is lower is a sweet spot for Cassan-
dra, and we report no data on this case. It is certainly more cost effective in general to scale with disk
instead of RAM, and a study to explore how such clusters would behave would be incredibly valuable.

Another thing not explored in this study are the tradeoffs involved regarding consistency, durability,
and other reliability parameters. Some of our other reports explore this in more depth, and we en-
courage people to examine those in conjunction with this study. The fact of the matter is that differ-
ent databases achieve higher performance by sacrificing different things, and it is critical to under-
stand the various tradeoffs before making broad conclusions.

These caveats aside, however, we find the use case where the working copy of data fits primarily into
RAM to be a common one for our clients, and hope these results provide valuable insight to those
looking into solutions.

CONCLUSION

14

Appendix A: Hardware Specifications

8 Servers

• CPU: 2 x Intel Xeon E5- 2620 V2 2.1GHz (6 cores)

• RAM: 4 x 16Gb Kingston ValueRAM KVR13R9D4/16 (64GB total)

• MB: SuperMicro 1U 6017R-WRF

• SSD: 2 x 100Gb SATA 6Gb/s intel DC S3700 - for data (200GB total, 70GB RAID- 1)

• 80Gb SATA 6Gb/s Intel DC S3500 - for OS

• Network: Intel I350T2BLK PCI- E x4 (1000Mbits)

Note: MongoDB recommended using RAID-10 for maximal performance. Our verification tests
showed minimal performance improvement in this configuration, so we fell back to RAID-1.

32 Clients

• CPU: 4 Core Intel(R) Core(TM) i5- 4440 CPU @ 3.10GHz 3GHz

• RAM: 8Gb

• Network: Realtek Semiconductor Co., Ltd. RTL8111/8168/8411 PCI Express Gigabit Ether-
net Controller

One 1Gbit switch

• 96Gbit/second communication matrix

• 48 ports

• all Clients and Servers are directly connected through it

One Orchestration Server
This server was simply used to gather and aggregate test data from the clients. The configuration of
this server is unimportant to the results.

15

Appendix B: Dataset

Dataset
For each database, depending on the cluster size we used 3 different datasets:

Notes:

• We are aware that a dataset of 20M records is small

• If we modestly increased the size of the dataset, different databases started keeping
different amounts of data in RAM, creating results that were not easily comparable

• The scaling behaviors within each database were consistent at any record size

• We elected to report on this small dataset size as the “all-RAM” number

Appendix C: OS Configuration

In order to run the test correctly we asked Database vendors to recommend system-level parameters.

General Parameters

1. Setup NOOP scheduler for SSD
echo noop > /sys/block/sda/queue/scheduler

2. Decrease read-ahead value to 8
blockdev --setra 8 /dev/sda

4 Node cluster 6 Node cluster 6 Node cluster

Number of records 20M 30M 40M

Number of fields per
record

10 10 10

Field size 150 Bytes 150 Bytes 150 Bytes

Total record size 1,500 Bytes 1,500 Bytes 1,500 Bytes

Total dataset size 27.9 GB 41.9 GB 55.8 GB

16

3. Increase limit of number of simultaneously opened files and number of processes.
 # vim /etc/security/limits.conf
 *- nofile 100000
 *- nproc 32768

4. Synchronize time using ntpd
 # chkconfig --level 0123456 ntpd on
 # /etc/init.d/ntpd start

5. Set up network card interrupts
 # cat /proc/interrupts | grep em1
 95: 1 0 0 0 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge em1
 96: 25344 0 0 0 0 0 0 0 0 0 337041437 0 IR-PCI-MSI-edge em1-TxRx-0
 97: 5511 0 0 0 0 0 0 0 0 367989305 0 0 IR-PCI-MSI-edge em1-TxRx-1
 98: 12685 0 0 0 0 0 0 0 300775727 0 0 0 IR-PCI-MSI-edge em1-TxRx-2
 99: 9585 0 0 0 0 0 0 327067958 0 0 0 0 IR-PCI-MSI-edge em1-TxRx-3
 100: 39700 0 0 0 0 0 246153034 0 0 0 0 0 IR-PCI-MSI-edge em1-TxRx-4
 101: 5726 0 0 0 0 331411642 0 0 0 0 0 0 IR-PCI-MSI-edge em1-TxRx-5
 102: 28678 0 0 0 301331698 0 0 0 0 0 0 0 IR-PCI-MSI-edge em1-TxRx-6
 103: 28813 0 0 329040811 0 0 0 0 0 0 0 0 IR-PCI-MSI-edge em1-TxRx-7

 # cat /proc/irq/56/smp_affinity
 The value stored in this file is a hexadecimal bit-mask representing all CPU cores in the sys
 tem. If the machine has 4 cores, then the value should be 15 (1111). In this case all cores will
 use for handling requests for interrupts from network devices.

6. Disable access time and disable barrier
 # vim /etc/fstab
 add noatime,nodiratime,barrier=0 option to the / and /data file systems.

UUID=... /
UUID=... /data then remount
mount -o remount /data
and check if the partition really got
mounted with noatime
mount

ext4 defaults,noatime,nodiratime,barrier=0 11
ext4 defaults,noatime,nodiratime,barrier=0 11

7. Overprovisioning
 Left 20% of free space on SSD drive for overprovisioning.

8. Disabling THP (transparent hugepages)
 Add the following to /etc/rc.local
 # vim /etc/rc.local:
 for i in /sys/kernel/mm/*transparent_hugepage/enabled; do echo never > $i; done for i in /
 sys/kernel/mm/*transparent_hugepage/defrag; do echo never > $i; done

17

9. Turn Swappiness OFF
 # sysctl vm.swappiness=

Cassandra-specific Parameters
1. Update /etc/security/limits.d/cassandra.conf with following
 cassandra - memlock unlimited
 cassandra - nofile 100000
 cassandra - nproc 32768
 cassandra - as unlimited

2. Update /etc/security/limits.d/90-nproc.conf with following
 *- nproc 32768

3. Add following line in /etc/sysctl.conf
 vm.max_map_count = 131072
 then run the following command
 # sysctl -p

4. Disable swap entirely
 Included in common recommendations.

5. Per Matt Kennedy recommendations for SSD:
 Put the following into /etc/rc.local
 # vim /etc/rc.local
 # echo deadline > /sys/block/<sda>/queue/scheduler
 # echo 0 > /sys/block/<sda>/queue/rotational
 # setra 0 /dev/<sda>

6. Cassandra.YAML tuning
 memtable_flush_writers: 8
 trickle_fsync: true
 compaction_throughput_mb_per_sec up: 128

7. Disable the commit log.
 see http://www.datastax.com/docs/1.1/references/cql/CREATE_KEYSPACE

8. Use current driver as token aware is now the default policy
 see_http://www.datastax.com/doc-source/developer/java-
 apidocs/com/datastax/driver/core/policies/TokenAwarePolicy.html

18

Couchbase-specific Parameters
1. Disable NUMA
 add at the start of command =”$COUCHDB -b” in /opt/couchbase/etc/init.d/couchdb # vim
 /opt/couchbase/etc/init.d/couchdb
 numactl --interleave=all
 # echo 0 > /proc/sys/vm/zone_reclaim_mode

2. Mount with BARRIER turned off
 Add barrier=0 to file system options in /etc/fstab and re-mount device.

3. Increase memcached threads to 8
 # curl --data “[ns_config:update_key({node, N, memcached}, fun (PList) ->
 lists:keystore(verbosity, 1, PList, {verbosity, ‘-t 8’}) end) || N <-
 ns_node_disco:nodes_wanted()].” -u Administrator:<password>
 http://<ip>:8091/diag/eval
 You only need to run this once against a cluster, but it will restart all the memcached process
 es at once.

4. Ensure compaction is turned off.
 check - Override the default autocompaction settings
 uncheck all other options to run compaction.

5. Increase bucket reader/writers to 8
 this is done through the IO on the bucket settings page.

6. Optimize Workload B (95/5% read/write)
 # wget -O- --user=Administrator --password=password --post-
 data=’ns_bucket:update_bucket_props(“default”, [{extra_config_string,
 “workload_optimization=read”}]).’ http://localhost:8091/diag/eval

MongoDB-specific Parameters
1. Place journal, log and data files on separate storage devices.

2. Filesystem: Use EXT4 or XFS filesystems; avoid EXT3.
 EXT4 filesystem is used.

3. UNIX ulimit settings
 Set limits as recommended in the MongoDB documentation:
 file size:
 # ulimit -f unlimited
 cpu time:
 # ulimit -t unlimited
 virtual memory:
 # ulimit -v unlimited
 open files:

19

 # ulimit -n 64000
 memory size:
 # ulimit -m unlimited
 processes/threads:
 # ulimit -u 64000
 Always remember to restart your mongod and mongos instances after changing the ulimit
 settings to make sure that the settings change takes effect.

4. Most MongoDB deployments should use disks backed by RAID-10.
 2 SSD disks joined into RAID1 array were used instead.

Appendix D: Database Topology
Network topology

Cassandra
A Cassandra cluster uses a ring topology. Our test used the Thrift client through YCSB.
YCSB -> CassandraClient -> Thrift -> Cassandra Cluster

20

Couchbase
Couchbase uses a star topology. Each server talks with all others.

The following topology was recommended by MongoDB: master, slave and arbiter installed on each
physical server, where master and slave store the data and the arbiter simply participates in elections.
The main point was that every server is a primary node for particular shard.

server-1: {master A, slave B, arbiter C}

server-2: {master B, slave C, arbiter D}

server-3: {master C, slave D, arbiter A}

server-4: {master D, slave A, arbiter B}

MongoDB

CONTACT US

THANK YOU

https://www.lineate.com/contact

