~ Lineate

Automating
Making

for a Leading

FinTech Company

Contents

Intro: Keeping a dynamic decision engine up to date

Using configuration, not code

Supporting partner banks and handling data integration complexity
Visualizing the decision engine workflows

Conclusion

~ Lineate

Intro:
Keeping a dynamic
decision engine up to date

Our client, a leading FinTech company specializing in online
lending, employs credit analysts who need to make rapid and
even same-day decisions to respond to their credit inquiries.
They do this using sophisticated automated processes to
evaluate credit risk and score applicants. The company’s
decision engine takes into account hundreds of different factors,
such as credit scores, external documents, and reports, and
applies scoring models using its own internal proprietary
processes. The client’s decision logic is complex but needs to be
transparent, testable, correct, and smart enough to allow for
large numbers of edge cases.

The company constantly evaluates loan performance and tunes
its decision engine to reflect varying circumstances. This is a
costly and time-consuming process, requiring specialized
technical expertise to effect changes. We knew there had to be a
better way, one that empowered credit analysts to improve and
iterate the credit scoring process themselves. Our challenge was
to build a system to meet these needs.

Using configuration,

not code

Although our client’s credit scoring system was composed of what are essentially software
applications, the logic behind it needed to be transparent to external experts in order to
validate and test. Moreover, the logic will need to change often because of new discoveries
and changing business conditions. For that reason, we extracted the specific rulesets from
the applications into configuration files. This allowed for different logic to be backtested by
swapping config files without rebuilding and redeploying the application, and for changes to
be clearly versioned and auditable.

In modeling out the credit decision process, we settled on several core concepts for the
decision engine:

Ruleset (set of conditional rules)
(Data source - external call

Score card - model calculation

Offer - final step if everything is OK

Rule - conditional rule with DSL and visual logic editor (continue,
decline, condition, skip step and etc., more data required,
partially approved)

Router - next step decisioner (if need to continue with next steps)

Supporting partner banks and

handling data integration complexity

We built a decision engine with rapid decision
capabilities for processing loan applications. These
capabilities were very attractive to the clients’ partner
banks, which were interested in leveraging this platform.
As dozens of large banks began to integrate, more
sophisticated challenges in maintaining the automated
rule sets came into play. The core decision-making logic
was similar across partner banks, but not the same.
Each partner may have had different third-party data
sources or differences in scoring formulas, or even
different branches in the decision-making tree.

The business logic around these decisions started to
grow quite complex, and it was being extended in
unpredictable directions that were difficult to encode in
configuration files. Our challenge was to create a
configuration system flexible enough to model arbitrarily
complex logic but clear enough for credit analysts to
understand and apply the models without bringing in a
programmer as an intermediary.

We eventually met all those challenges for our client. The first evolutionary step was to replace
JSON config files with something that could operate in different ways on the data structures
familiar to the credit analysts. We considered using one of the open source business rules
management systems available on the market, such as Drools, because we had used this type
of system before. However, this case had many business levels, in addition to significant
security and UX requirements. These conditions, in combination with the inherited business
logic implementations led us to build a new decision engine and management system.

We used the JMESPath query language as a base to design a simple but flexible domain-
specific language. This language allowed us to make decision-making rules readable by non-
technical people, yet flexible enough to support arbitrary changes in many dimensions. A
further iteration could be to move this language to Kotlin, which provides additional perks such
as syntax validation, compilation, and unit testing, and allows the development of unique

syntax that can call special functionality.
5

Visualizing the decision

engine workflows

With the client’'s decision engine complete, data integration began. But as dozens of
integrations started to take shape, it became too difficult to manage the configurations, even
with the domain-specific language we had designed. There was neither syntax validation nor
real-time error checks, and it was very easy to make a mistake — we figured this out only
after deploying the config and having to debug through log files. At this point, we decided to
build an integrated development environment (IDE) for credit analysts.

Initially, we built a user interface to manage the rule sets and visualize the decision-making
tree, along with the ability to use a visual editor to drag and drop logic steps and branch
logic. The idea of rules visualization was so successful that the system grew into a full-
fledged rules management system.

With the full user interface that visualizes and manages business logic, you can quickly test
logic against test data. And with the Ul you can create many policy parts using visual
constructor components, or you can clone and reuse certain policy steps. Even the user
interface itself is configurable, presenting different capabilities to different banks.

In short, the domain-specific language was our solution to dealing with the increasing
complexity of rules, and the visualization and management tools we built upon it handle
larger numbers of bank data integrations and enable business experts to participate in
review and testing.

Following are some, but not all, features of the system were:

- «» «» «» «» Visual editor that shows a tree representation of the decision-making process and
allows you to create new steps with rules or conditional steps

== «» «» «» «» \jsual editor with on-the-fly rules and logic validation, so any syntax or logical
error is immediately highlighted for your

e «» e» e» e» Policies, which are the root of any decision-making process. Inside a policy you can
add a rule set, rule, logic branching, third party system call, or even a task for a human.

. If during the loan estimation process a condition or step requires a
human analyst to review, approve, or allow something, the system
will automatically create a task for the analyst. The human analyst
input is then automatically used in the next decision-making steps. 6

. You can refer another policy inside a policy, so you can implement

more complicated decision making with “reusable” decision-making
trees. This allows you to stack decision-making policies like Legos.

All policies are versioned and “draft” mode is supported. This enables
you to deploy, test, or try multiple scoring and decision-making
models in production. You can also promote a draft version to
production when it passes all tests and user acceptance testing.

Policies are exportable to a JSON format, so you can export and
import a policy, for example from staging to dev for testing. Exporting
allows you to quickly clone the whole decision-making process. The
average exported policy file consists of about 4,500 lines of code, or
a few hundred decision-making logic steps. You can imagine how
complicated it would be to manage such policies across multiple
partners as textual configuration files or application source code.

Visual logic representation, which is the coolest feature from our perspective.

The visualization allows credit analysts to not only edit but also
review loan estimation results.

The decision engine generates a final decision, but the visualization
allows analysts to quickly see why such a decision was made, at what
step the application was declined, or what documents are missing,
why the loan amount is so small, and so on.

The visual logic representation feature tremendously helps not only
in debugging production data, but also in testing decision-making
logic by nontechnical people.

This is not a full list of system features, but it shows the scale of the
system and the evolution of decision-making logic from simple config
files to complex rules management Ul.

Conclusion

At Lineate, we always emphasize building simple MVPs so we can quickly bring our clients’
products to market. Accomplishing this task can be made simply by building rules logic
directly into code. Building complex configurations and domain-specific languages can be
complicated, and the resulting system requires users to face a learning curve before they
can start using the system efficiently. But for critical FinTech functions, building out a full
domain language can make sense sense because of compliance and auditing needs, as well
as the fact that business expertise is spread across many people and the majority of them
are nontechnical.

We discovered the limits of that approach, however, when we released this flexible platform
to be the back end for several of the clients’ large partner banks.. The increasingly complex
automated rules required engineers to make more and more changes to the configurations,
which meant that many of the advantages of the domain-specific languages were not being
realized. Engineers were not only maintaining the rule sets, they were also tasked with
internally spreading knowledge about how things worked.

In the end, we built a highly maintainable solution for our FinTech client:

a fully managed decision engine and a process visualization system that
enables credit analysts to understand the system “at a glance” and

customize rule sets to support dozens of partner banks. A single user
experience supported all partners and eliminated the need to migrate
thousands of rules for each partner.

Thank you.

Can we help you with your
ambitious goals?

Talk to us today at

~ Lineate

https://www.lineate.com/contact#project-form

