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Introduction
The amount of data collected by organizations is exploding, growing at an expected 26% 

compound annual growth rate between 2015 and 2025.  The emerging influx of data com-

prises event-level information from various applications, user devices, sensors, and low-level 

operational processes.   It has the potential to open doors to new ways to grow business, 

ranging from personalization, predictive optimization, tailored product recommendations, 

and countless opportunities for direct relationships with customers.  
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A crucial step towards this is to aggregate and visualize the data in ways that assist in de-

veloping these processes, be they data science hypotheses, optimization paths, or product 

ideas.   But such aggregation and visualization is difficult with large amounts of semi-struc-

tured data.  

It requires that we prepare the data such that we can explore it almost instantaneously, 

and that we preplan the interactions from both user experience and data optimization 

perspectives.
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What is a data-rich 
dashboard?

A dashboard is distinct from a report in that it provides 

multiple views into the data and allows a user to explore it 

interactively.  Traditionally, dashboards were a convenient 

set of high-level metrics organized to conveniently give 

groups of users what they need at a glance.   The data-rich 

dashboard takes this same idea and incorporates into it 

low-level, semi-structured events.   These events were often 

not captured at all in the past, or at best been dumped into 

a data lake for occasional ad-hoc queries, or summarized 

as high-level aggregates and exposed as KPIs.  A data-rich 

dashboard exposes these low-level events at scale.  It takes 

granular data points as they flow in, and provides an immer-

sive and extremely responsive way to make sense of them.

Under the hood, the main difference driving this evolution is 

the large number of events converging into a data stream.   

These events range from usage logs around web or mobile 

applications, to feeds coming in from the ever increasing 

array of devices on the internet of things, to incredibly low 

level operational data that is increasingly being collected for 

systems such as those in creative production, automation, 

or marketing.   These events pose two challenges beyond 

those in traditional dashboards.   First of all, there are a lot 

of them.   Sometimes on the order of billions per day.   And 

secondly, they are often not very structured, making queries 

of them relatively specialized and not conducive to real-time 

interaction.   The primary challenges of a data-rich dash-

board is to make it feel natural to explore such data, and to 

be able to respond and drill down on such data essentially 

immediately. 2
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Kinds of dashboards
Dashboards are often categorized into three types:

1
Strategic 
Dashboards

Infrequent updates to provide high-level information to executives

For example:  company or departmental scorecard, KPI progress against 

targets, project ROI or financial reports

Allow employees “in the trenches” to get feedback on their operational 

activities and react to them

For example:  ad campaign performance, user engagement with vari-

ous content, team productivity or cost metrics

Explore data to understand what is happening behind the scenes, 

empower ideation and build hypotheses

For example:  Cross-cutting filtering of sales, marketing attribution

2
Operational 
Dashboards

3
Analytic 
Dashboards

3
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When we talk about making dashboards data-rich, we’re focusing on the latter two.  Both 

operational and analytic use cases offer the potential for people to quickly and seamlessly 

explore data down to extremely granular events.  

 For operations, this can mean providing point-in-time and near real-time snapshots of opera-

tions to adjust or optimize parameters on the fly (e.g. retargeting an advertising campaign to 

where it is performing best.  

For analytics, it can mean providing visualization tools for your data scientists to assist in hy-

pothesis generation, or it can provide the rest of users and understanding of why algorithms 

are doing what they are, and to help them make sense of the flood of aggregated information.

Data-rich dashboards

4
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The twin concerns of 
exploring data in real time

For both Operational and Analytic dashboards, it is imperative that users be able to interact 

with the dashboard and get an immediate response.   Load delays or clunky interactions will 

quickly render using the system a chore, defeating the purpose of making it easy to identify 

trends to inform decisions.   The central challenge in building them involves how low-level 

event data can be presented intuitively and quickly.   We do this through preplanning how 

data is going to be accessed, and optimizing data retrieval paths along those dimensions.   

Before we get into how we do that, we’ll state the two rules of thumb we would want for any 

data-rich dashboard.

5
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In short, we must have the right data, in the right place, ready for the user’s next move.

2 ‘Rules of Thumb’ 

User interactions should 
have immediate results.

Every action a user takes should result 

in the dashboard fully updated within 

500 milliseconds.   Since any attempt to 

drill down or query change can result in 

reloading multiple components across 

the dashboard, these queries need to 

be able to run in parallel and complete 

within a specific time bound.   The event 

data will not naturally fit to within these 

constraints, so we must preprocess and 

preaggregate so that we can succeed.

#1
Exploration should be natural 
and intuitive.

The dashboard must be optimized and de-

signed around the activities that users expect 

to occur without interruption.   For example, 

when rendering geospatial data, we assume 

the user will start scrolling through the maps, 

and the surrounding regions must be ready to 

be displayed as she does so.   For event data, 

we expect the user to refine the time window 

she is looking at and will only know the right 

granularity when it appears.  Since it is impos-

sible to resolve completely arbitrary activities 

in near real-time, we need to develop against 

the use cases that matter.

#2

6
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Challenges of querying 
event-level data

As we incorporate granular data into the dashboards, the data challenges around these 

become considerable.   An old-school dashboard might report on the level of individual sales 

or conversions, which would probably involve handling up to somewhere on the order of 

thousands of records per day.   When we start to include lower-level user events (individual 

device actions, operational logs, ad campaign impression-level data, etc.), it’s not unusual to 

be dealing with millions or even billions per day.   Even when the amount is lower, this kind of 

data is typically less structured than traditional operational data, and often not conducive to 

querying.  Since we gave ourselves a mandate of responding immediately, we’ll need to care-

fully design our data architecture to make this a possibility.

There are powerful database products like Snowflake or Vertica which are designed specifi-

cally to handle analytical queries across large data volumes.   These are often crucial compo-

nents in a data warehouse, and offer the ability to create and run complex queries over large 

amounts of data.  

They are not, however, designed to be able to run large numbers of queries in the half-second 

latency requirement we set out for ourselves.   This isn’t because of any flaw in the products 

— they are general purpose analytical databases which are designed for flexibility.   It is sim-

ply not possible to create a general-purpose database that can run any kind of query over a 

large dataset in a fixed amount of time.  Fortunately, a real-time dashboard is not attempting 

to answer arbitrary questions, so there are other ways to solve this problem.

“It is impossible to create a purely general purpose system that says 
“let me explore all my granular data, super fast, and query by any 

dimension we want.”

7
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To achieve this, we must design the data inter-

actions in the planning stages.   We carefully 

consider how users are likely to interact with 

the data and what kinds of questions they will 

be asking.   By designing the dashboard around 

such use cases, we can achieve enormous im-

provements in performance and scale through 

careful preaggregation of data.   We then use 

appropriate databases to create the custom 

preaggregated indexes we need for the use 

cases we’ve designed.

In the case of event data, almost all interactions 

begin with querying over a single time range.  

So we start designing our data model through 

period-based preaggregations of useful partial 

values, and ensure we have a database that can 

query across time ranges efficiently (there are 

time series databases such as Apache Druid 

and InfluxDB that are often good choices, as 

are columnar databases such as Clickhouse 

or Cassandra, depending on the data and use 

cases.)    We know the user is going to select a 

time range, and we know to preindex the events 

a single range within this range.  We then take 

those preaggregated events and combine them 

in ways that depend on the action the user 

takes.

These aggregates must be kept updated with

events as they flow in.   The write load is by 

definition intensive, and performance of the 

data indexes needed to take that into account.   

Compounding this is the fact that event data is 

presumably coming from multiple disconnected 

systems operating at different network tiers and 

connecting to to different devices.   The nature 

of distributed systems means that events are 

unlikely to come in sequentially, so streaming 

the data into the aggregate indexes needs to be 

able to rewind and recover without impacting 

dashboard performance.   These are solvable 

problems, but need to be considered at the time 

the data architecture is designed.

Querying large amounts of data in parallel is 

fundamental to a data-rich dashboard.   To do 

so effectively doesn’t require that everything 

be known up front, but it does necessitate that 

data efficiency is built in to the development 

process from the start.   The data needs to be 

preaggregated in ways it will be queried at scale 

and it needs to be streamed into this system 

in a way that minimizes impact on user-facing 

systems and the users of the dashboards them-

selves.   Latency targets need to be built into 

the development process as first class require-

ments, with code-level timing assertions built in 

throughout the engineering and testing phases.   

The return on this is a system that allows users 

to work with and explore potentially huge pools 

of data as if it were all immediately available.
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Managing complexity 
using drill paths

We just discussed that we need to properly preaggregate the data if we want to make a dash-

board immediately responsively.  Done correctly, this enables us to make something imme-

diately responsive.   But there is a problem here.   The more dimensions we allow the user to 

explore, the greater the burden of preindexing data becomes.    

For each dimension we allow the user to explore,  we need to maintain the set of preaggre-

gates that allow that data to be returned quickly into the dashboard.   In addition to that, 

since the dashboard allows users to drill down by various attributes as they use the dash-

board, it means that we need preindexed data not simply for every dimension we are expos-

ing, but for every combination of attributes they may invoke.   

This can result in a “combinatorial explosion” of preprocessing and disk space as the number 

of supported queries increases.  Therefore, we need to control this at the application design 

level.  This is where the concept of “drill paths” comes in.

How do we constrain the kinds of queries users will 

make enough to render them nearly instantly, while at the same 

time allowing them to comfortably explore data in 

different dimensions?

Definition: A drill path is a set of hierarchical or naturally re-

lated objects of the same class ordered in the way they are 

meant to be explored.
9
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Sample Drilldowns

1
Domain: 
Publishing

2
Domain:
Advertising

3
Autonomous
Driving

High level Metrics          Drilldowns
• Time on site

• Page views

• Conversions

Cohort → individual → page view → 
action

High level Metrics          Drilldowns
• Conversion rate

• Cost per click

Campaign → segment → user → 
conversion path → impression

High level Metrics          Drilldowns
• Accident rate

• Fuel consumption

Region→ road → individual  → 
trip → state change

By defining a supported set of drill paths, we create a sandbox that allows us to manage the 

number of dimensions we preaggregate against.   We can then design a preaggregating data 

indexing layer that is able to present this data with sub-second latency, allowing the dash-

board to respond immediately to the set of interactions we allow the user to drill down into.

10
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Guiding the user with 
contextual design cues

Drill paths provide the additional benefit of 

making the dashboard intuitive to use.   With 

a data-rich dashboard, a large number of 

semi-structured events are explored in differ-

ent ways, which generally requires a significant 

number of visual components that interact with 

each other.   This can get overwhelming fast.   

We can leverage the same drill paths we define 

to provide visual cues of which components are 

conceptually linked to each other, and provide a 

natural way to drill down to explore the data in 

final detail.

Every dashboard consists of a series of charts, 

tables, indicators, and controls that illustrate 

various properties of the entity being looked at.   

As a user interacts with one of these widgets, 

the other widgets dynamically adapt to provide 

further insight into the data (this is what makes 

it a dashboard and not simply a report.)    The 

user probably isn’t thinking explicitly in terms of 

drill paths, so the user experience should focus 

on minimizing the mental work required to un-

derstand which widgets correspond to which.   
11
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To illustrate:  Imagine a dashboard which contains a pie chart of conversions by region, and 

a bar chart of conversions by state.   These two widgets would be color coded in the same 

way, to give the user a visual indication that they are related windows into the same drill path.   

Clicking on a region in the pie chart would cause the bar chart to break down by states in 

that region.   Drilling down further in the pie chart might refresh to show breakdown by state, 

and simultaneously update the bar chart to show cities within the state.   Note that while it 

would also be possible to click on a region to determine the regional sales by day of week, 

this would break the natural visual correspondence between these two widgets.   We would 

instead use a separate set of components with a different drill path and color scheme, adding 

more components but simplifying the interaction.

12
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Optimizing for time 
and space

In aggregate, series of events tell us a lot, but each isolated 

low-level event is mostly meaningless.   So why allow drilling 

down to this level?   Because it allows users to see the founda-

tional elements on which the metrics are being built, providing 

context and building trust in the model.  

 If users are able to see the lowest level data available, they will 

feel more comfortable extrapolating from it, even if they’re not 

using that data directly on a day to day level.   The nature of 

this data allows for some standard optimizations we can do to 

streamline the user experience.

13
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Using maps effectively

Maps are, of course, the natural way to represent geospatial data and get intuitive insight 

from it.   If you’re showing someone a map, you should expect them to spend significant time 

drilling up, down, and scrolling around as they look for patterns.   Since there is a potentially 

huge amount of data underlying the maps (at minimum, the considerable data needed to 

render the map itself), this is a common place for pitfalls in implementing a dashboard.

14
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Since every event takes place at a specific date 

and time, almost every query across events will 

be hitting a time period in one way or another.   

That means that minimizing the work involved 

in scanning a range of dates is of paramount im-

portance.   We have found columnar databases 

such as Apache Druid or Clickhouse to be good 

choices.   If we are able to cluster time entry 

records physically close to each other when we 

write them, it makes scanning across them to 

resolve queries along various dimensions vastly 

more efficient than we might otherwise achieve 

using a standard relational index.

Use columnar data storage

Even though a dashboard may be envisioned as 

an internally facing tool only, they tend to evolve 

in unexpected ways, and sometimes need to 

be published more broadly.   A lot of the recom-

mendations we made around drill paths come 

from the experience of seeing different groups 

of users interrelating with the data in differ-

ent ways.   By planning for the supported and 

unsupported dimensions up front, it adds great 

flexibility downstream.   Even if the dashboard is 

never published, designing as if it might be will 

likely result in a better thought out visualization.

Plan for multi-tenancy

Lineate likes to use GraphQL as protocol for transferring data to a user interface.   We find it 

works especially well for dashboards.    As dashboards get richer, it becomes less likely that 

everything desired is represented by a formal schema beneath them.   When we define drill 

paths, we’re in effect defining various projections of this semi-structured data.   GraphQL 

provides a nice way of modeling the drill paths accessible to the dashboard.  On top of this, 

GraphQL provides a nice heuristic for only pulling the specific data needed to render a view, 

which is ideal for rapid development and limiting bandwidth.

Model domain data as a graph using GraphQL

15
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Conclusion

The explosion of data over the past handful of years has triggered the need for advanced 

dashboards that go beyond providing a business intelligence tool to departmental stakehold-

ers.   The large amount of semi-structured data associated with events makes building da-

ta-rich dashboards and quantitatively different exercise than building traditional dashboards.   

Done correctly, it’s an interactive window in which people explore and thrive.   

They key in making it all work is being fully immersive and interactive.  Each component 

needs to update with very low latency, and the relationship between data needs to be intui-

tive and transparent.

•	 Have all the data ready to be served, as soon as the user needs it

•	 Plan for the specific drill paths in which the data will be explored

•	 Make it clear and intuitive how each widget impacts every other

This kind of advanced, data-rich dashboards need to be thought of less as an afterthought 

and more as a source of innovation and competitive edge.   Large amounts of semi-struc-

tured event data make developing them a first-class application development challenge.

16
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lineate.com/contact-us

THANK YOU
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