
1

The New View: The New View:
How Data-Rich How Data-Rich
Dashboards Have Dashboards Have
Changed The Changed The
GameGame
Addressing complexity in the
data-rich dashboards of today.

2

CONTENTS

2
What is a data-rich
dashboard?

5
The twin concerns
of exploring data in
real time

9
Managing
complexity using
drill paths

13
Optimizing for time
and space

16
Conclusion

7
Challenges of
querying event level
data

1

Introduction
The amount of data collected by organizations is exploding, growing at an expected 26%

compound annual growth rate between 2015 and 2025. The emerging influx of data com-

prises event-level information from various applications, user devices, sensors, and low-level

operational processes. It has the potential to open doors to new ways to grow business,

ranging from personalization, predictive optimization, tailored product recommendations,

and countless opportunities for direct relationships with customers.

1

A crucial step towards this is to aggregate and visualize the data in ways that assist in de-

veloping these processes, be they data science hypotheses, optimization paths, or product

ideas. But such aggregation and visualization is difficult with large amounts of semi-struc-

tured data.

It requires that we prepare the data such that we can explore it almost instantaneously,

and that we preplan the interactions from both user experience and data optimization

perspectives.

2

What is a data-rich
dashboard?

A dashboard is distinct from a report in that it provides

multiple views into the data and allows a user to explore it

interactively. Traditionally, dashboards were a convenient

set of high-level metrics organized to conveniently give

groups of users what they need at a glance. The data-rich

dashboard takes this same idea and incorporates into it

low-level, semi-structured events. These events were often

not captured at all in the past, or at best been dumped into

a data lake for occasional ad-hoc queries, or summarized

as high-level aggregates and exposed as KPIs. A data-rich

dashboard exposes these low-level events at scale. It takes

granular data points as they flow in, and provides an immer-

sive and extremely responsive way to make sense of them.

Under the hood, the main difference driving this evolution is

the large number of events converging into a data stream.

These events range from usage logs around web or mobile

applications, to feeds coming in from the ever increasing

array of devices on the internet of things, to incredibly low

level operational data that is increasingly being collected for

systems such as those in creative production, automation,

or marketing. These events pose two challenges beyond

those in traditional dashboards. First of all, there are a lot

of them. Sometimes on the order of billions per day. And

secondly, they are often not very structured, making queries

of them relatively specialized and not conducive to real-time

interaction. The primary challenges of a data-rich dash-

board is to make it feel natural to explore such data, and to

be able to respond and drill down on such data essentially

immediately. 2

3

Kinds of dashboards
Dashboards are often categorized into three types:

1
Strategic
Dashboards

Infrequent updates to provide high-level information to executives

For example: company or departmental scorecard, KPI progress against

targets, project ROI or financial reports

Allow employees “in the trenches” to get feedback on their operational

activities and react to them

For example: ad campaign performance, user engagement with vari-

ous content, team productivity or cost metrics

Explore data to understand what is happening behind the scenes,

empower ideation and build hypotheses

For example: Cross-cutting filtering of sales, marketing attribution

2
Operational
Dashboards

3
Analytic
Dashboards

3

4

When we talk about making dashboards data-rich, we’re focusing on the latter two. Both

operational and analytic use cases offer the potential for people to quickly and seamlessly

explore data down to extremely granular events.

 For operations, this can mean providing point-in-time and near real-time snapshots of opera-

tions to adjust or optimize parameters on the fly (e.g. retargeting an advertising campaign to

where it is performing best.

For analytics, it can mean providing visualization tools for your data scientists to assist in hy-

pothesis generation, or it can provide the rest of users and understanding of why algorithms

are doing what they are, and to help them make sense of the flood of aggregated information.

Data-rich dashboards

4

5

The twin concerns of
exploring data in real time

For both Operational and Analytic dashboards, it is imperative that users be able to interact

with the dashboard and get an immediate response. Load delays or clunky interactions will

quickly render using the system a chore, defeating the purpose of making it easy to identify

trends to inform decisions. The central challenge in building them involves how low-level

event data can be presented intuitively and quickly. We do this through preplanning how

data is going to be accessed, and optimizing data retrieval paths along those dimensions.

Before we get into how we do that, we’ll state the two rules of thumb we would want for any

data-rich dashboard.

5

6

In short, we must have the right data, in the right place, ready for the user’s next move.

2 ‘Rules of Thumb’

User interactions should
have immediate results.

Every action a user takes should result

in the dashboard fully updated within

500 milliseconds. Since any attempt to

drill down or query change can result in

reloading multiple components across

the dashboard, these queries need to

be able to run in parallel and complete

within a specific time bound. The event

data will not naturally fit to within these

constraints, so we must preprocess and

preaggregate so that we can succeed.

#1
Exploration should be natural
and intuitive.

The dashboard must be optimized and de-

signed around the activities that users expect

to occur without interruption. For example,

when rendering geospatial data, we assume

the user will start scrolling through the maps,

and the surrounding regions must be ready to

be displayed as she does so. For event data,

we expect the user to refine the time window

she is looking at and will only know the right

granularity when it appears. Since it is impos-

sible to resolve completely arbitrary activities

in near real-time, we need to develop against

the use cases that matter.

#2

6

7

Challenges of querying
event-level data

As we incorporate granular data into the dashboards, the data challenges around these

become considerable. An old-school dashboard might report on the level of individual sales

or conversions, which would probably involve handling up to somewhere on the order of

thousands of records per day. When we start to include lower-level user events (individual

device actions, operational logs, ad campaign impression-level data, etc.), it’s not unusual to

be dealing with millions or even billions per day. Even when the amount is lower, this kind of

data is typically less structured than traditional operational data, and often not conducive to

querying. Since we gave ourselves a mandate of responding immediately, we’ll need to care-

fully design our data architecture to make this a possibility.

There are powerful database products like Snowflake or Vertica which are designed specifi-

cally to handle analytical queries across large data volumes. These are often crucial compo-

nents in a data warehouse, and offer the ability to create and run complex queries over large

amounts of data.

They are not, however, designed to be able to run large numbers of queries in the half-second

latency requirement we set out for ourselves. This isn’t because of any flaw in the products

— they are general purpose analytical databases which are designed for flexibility. It is sim-

ply not possible to create a general-purpose database that can run any kind of query over a

large dataset in a fixed amount of time. Fortunately, a real-time dashboard is not attempting

to answer arbitrary questions, so there are other ways to solve this problem.

“It is impossible to create a purely general purpose system that says
“let me explore all my granular data, super fast, and query by any

dimension we want.”

7

8

To achieve this, we must design the data inter-

actions in the planning stages. We carefully

consider how users are likely to interact with

the data and what kinds of questions they will

be asking. By designing the dashboard around

such use cases, we can achieve enormous im-

provements in performance and scale through

careful preaggregation of data. We then use

appropriate databases to create the custom

preaggregated indexes we need for the use

cases we’ve designed.

In the case of event data, almost all interactions

begin with querying over a single time range.

So we start designing our data model through

period-based preaggregations of useful partial

values, and ensure we have a database that can

query across time ranges efficiently (there are

time series databases such as Apache Druid

and InfluxDB that are often good choices, as

are columnar databases such as Clickhouse

or Cassandra, depending on the data and use

cases.) We know the user is going to select a

time range, and we know to preindex the events

a single range within this range. We then take

those preaggregated events and combine them

in ways that depend on the action the user

takes.

These aggregates must be kept updated with

events as they flow in. The write load is by

definition intensive, and performance of the

data indexes needed to take that into account.

Compounding this is the fact that event data is

presumably coming from multiple disconnected

systems operating at different network tiers and

connecting to to different devices. The nature

of distributed systems means that events are

unlikely to come in sequentially, so streaming

the data into the aggregate indexes needs to be

able to rewind and recover without impacting

dashboard performance. These are solvable

problems, but need to be considered at the time

the data architecture is designed.

Querying large amounts of data in parallel is

fundamental to a data-rich dashboard. To do

so effectively doesn’t require that everything

be known up front, but it does necessitate that

data efficiency is built in to the development

process from the start. The data needs to be

preaggregated in ways it will be queried at scale

and it needs to be streamed into this system

in a way that minimizes impact on user-facing

systems and the users of the dashboards them-

selves. Latency targets need to be built into

the development process as first class require-

ments, with code-level timing assertions built in

throughout the engineering and testing phases.

The return on this is a system that allows users

to work with and explore potentially huge pools

of data as if it were all immediately available.

8

9

Managing complexity
using drill paths

We just discussed that we need to properly preaggregate the data if we want to make a dash-

board immediately responsively. Done correctly, this enables us to make something imme-

diately responsive. But there is a problem here. The more dimensions we allow the user to

explore, the greater the burden of preindexing data becomes.

For each dimension we allow the user to explore, we need to maintain the set of preaggre-

gates that allow that data to be returned quickly into the dashboard. In addition to that,

since the dashboard allows users to drill down by various attributes as they use the dash-

board, it means that we need preindexed data not simply for every dimension we are expos-

ing, but for every combination of attributes they may invoke.

This can result in a “combinatorial explosion” of preprocessing and disk space as the number

of supported queries increases. Therefore, we need to control this at the application design

level. This is where the concept of “drill paths” comes in.

How do we constrain the kinds of queries users will

make enough to render them nearly instantly, while at the same

time allowing them to comfortably explore data in

different dimensions?

Definition: A drill path is a set of hierarchical or naturally re-

lated objects of the same class ordered in the way they are

meant to be explored.
9

10

Sample Drilldowns

1
Domain:
Publishing

2
Domain:
Advertising

3
Autonomous
Driving

High level Metrics Drilldowns
• Time on site

• Page views

• Conversions

Cohort → individual → page view →
action

High level Metrics Drilldowns
• Conversion rate

• Cost per click

Campaign → segment → user →
conversion path → impression

High level Metrics Drilldowns
• Accident rate

• Fuel consumption

Region→ road → individual →
trip → state change

By defining a supported set of drill paths, we create a sandbox that allows us to manage the

number of dimensions we preaggregate against. We can then design a preaggregating data

indexing layer that is able to present this data with sub-second latency, allowing the dash-

board to respond immediately to the set of interactions we allow the user to drill down into.

10

11

Guiding the user with
contextual design cues

Drill paths provide the additional benefit of

making the dashboard intuitive to use. With

a data-rich dashboard, a large number of

semi-structured events are explored in differ-

ent ways, which generally requires a significant

number of visual components that interact with

each other. This can get overwhelming fast.

We can leverage the same drill paths we define

to provide visual cues of which components are

conceptually linked to each other, and provide a

natural way to drill down to explore the data in

final detail.

Every dashboard consists of a series of charts,

tables, indicators, and controls that illustrate

various properties of the entity being looked at.

As a user interacts with one of these widgets,

the other widgets dynamically adapt to provide

further insight into the data (this is what makes

it a dashboard and not simply a report.) The

user probably isn’t thinking explicitly in terms of

drill paths, so the user experience should focus

on minimizing the mental work required to un-

derstand which widgets correspond to which.
11

12

To illustrate: Imagine a dashboard which contains a pie chart of conversions by region, and

a bar chart of conversions by state. These two widgets would be color coded in the same

way, to give the user a visual indication that they are related windows into the same drill path.

Clicking on a region in the pie chart would cause the bar chart to break down by states in

that region. Drilling down further in the pie chart might refresh to show breakdown by state,

and simultaneously update the bar chart to show cities within the state. Note that while it

would also be possible to click on a region to determine the regional sales by day of week,

this would break the natural visual correspondence between these two widgets. We would

instead use a separate set of components with a different drill path and color scheme, adding

more components but simplifying the interaction.

12

13

Optimizing for time
and space

In aggregate, series of events tell us a lot, but each isolated

low-level event is mostly meaningless. So why allow drilling

down to this level? Because it allows users to see the founda-

tional elements on which the metrics are being built, providing

context and building trust in the model.

 If users are able to see the lowest level data available, they will

feel more comfortable extrapolating from it, even if they’re not

using that data directly on a day to day level. The nature of

this data allows for some standard optimizations we can do to

streamline the user experience.

13

14

Using maps effectively

Maps are, of course, the natural way to represent geospatial data and get intuitive insight

from it. If you’re showing someone a map, you should expect them to spend significant time

drilling up, down, and scrolling around as they look for patterns. Since there is a potentially

huge amount of data underlying the maps (at minimum, the considerable data needed to

render the map itself), this is a common place for pitfalls in implementing a dashboard.

14

15

Since every event takes place at a specific date

and time, almost every query across events will

be hitting a time period in one way or another.

That means that minimizing the work involved

in scanning a range of dates is of paramount im-

portance. We have found columnar databases

such as Apache Druid or Clickhouse to be good

choices. If we are able to cluster time entry

records physically close to each other when we

write them, it makes scanning across them to

resolve queries along various dimensions vastly

more efficient than we might otherwise achieve

using a standard relational index.

Use columnar data storage

Even though a dashboard may be envisioned as

an internally facing tool only, they tend to evolve

in unexpected ways, and sometimes need to

be published more broadly. A lot of the recom-

mendations we made around drill paths come

from the experience of seeing different groups

of users interrelating with the data in differ-

ent ways. By planning for the supported and

unsupported dimensions up front, it adds great

flexibility downstream. Even if the dashboard is

never published, designing as if it might be will

likely result in a better thought out visualization.

Plan for multi-tenancy

Lineate likes to use GraphQL as protocol for transferring data to a user interface. We find it

works especially well for dashboards. As dashboards get richer, it becomes less likely that

everything desired is represented by a formal schema beneath them. When we define drill

paths, we’re in effect defining various projections of this semi-structured data. GraphQL

provides a nice way of modeling the drill paths accessible to the dashboard. On top of this,

GraphQL provides a nice heuristic for only pulling the specific data needed to render a view,

which is ideal for rapid development and limiting bandwidth.

Model domain data as a graph using GraphQL

15

16

Conclusion

The explosion of data over the past handful of years has triggered the need for advanced

dashboards that go beyond providing a business intelligence tool to departmental stakehold-

ers. The large amount of semi-structured data associated with events makes building da-

ta-rich dashboards and quantitatively different exercise than building traditional dashboards.

Done correctly, it’s an interactive window in which people explore and thrive.

They key in making it all work is being fully immersive and interactive. Each component

needs to update with very low latency, and the relationship between data needs to be intui-

tive and transparent.

•	 Have all the data ready to be served, as soon as the user needs it

•	 Plan for the specific drill paths in which the data will be explored

•	 Make it clear and intuitive how each widget impacts every other

This kind of advanced, data-rich dashboards need to be thought of less as an afterthought

and more as a source of innovation and competitive edge. Large amounts of semi-struc-

tured event data make developing them a first-class application development challenge.

16

17

lineate.com/contact-us

THANK YOU

17

http://lineate.com

	13
	5
	2
	16
	7
	9
	16

