
A PROGRAMMER
IN SERVERLESS
LAND
A detailed how-to guide for
serverless applications

CONTENTS

3
Preface

5
01. First steps. First
lambda.

33
03. Making friends
with the database.

48
04. Building REST
with ApiGateway.

65
05. We put the fin-
ishing touches on
our serverless de-
veloper’s bag of
tricks.

19
02. Spinning up the
Database.

79
Conclusion

3

Taking a serverless approach to development has long been very popular. According to various surveys,

developers cite the following advantages of serverless technologies:
 • Flexible scaling
 • Speed of development
 • Reduced time and cost of administering applications
 • Quick releases

The benefits look enticing and promising. But does the approach deliver on the promise?

It’s time to get acquainted with serverless technologies. We will analyze the serverless approach through

the prism of the experience of creating “classic” applications. This means that there must be tests, the abili-

ty to run code locally, the ability to deploy and debug across multiple environments, logs, metrics, and so on.

Let’s skip past Hello World and take on a challenge with realistic scenarios.

Of course, there are a lot of different articles and instructions on the internet, but few of them take a holistic

approach that takes you from bootstrapping your project all the way to post production support. Let’s go!

Throughout the guide we apply the options and considerations we discuss to a sample project to create a

REST API for a simple bug tracker. The bug tracker has projects, and people who work on these projects.

There are tickets - tasks that are assigned to people. Tickets, of course, have an execution status. Each proj-

ect has its own github repository. It looks something like this:

Preface

4

We will implement the following methods:

Get a project by ID with information about the people who work on it, as well as

information about open pull requests.

 • Update project information.

 •Add a person to the project.

 • Remove the person from the project.

Preface

Our plan will proceed accordingly:

 • Understanding lambda functions and making our first simple lambda func-

tion.

 • Spinning up the data base.

 • Integrating our Lambda function with the database

 • Create a REST API and hook up our previously created functions up to it.

 •Deploy to production.

Of course, we aren’t cutting production code on a Friday night (never do that), nor are we learning coding

basics.

We are focusing on the serverless approach and will show how to adapt familiar patterns to this approach.

As such, topics beyond this focus, such as the structure of database queries for example, are less important

than where and how and with what parameters such code is called. The specifics of database and 3rd party

API integration will be assumed to work as per usual for the purposes of our discussion without delving into

details.

So now, which serverless provider to choose? Recently, there are more and more of them, even Oracle has

its own set of serverless services. That said, we will start with the flagship, AWS - it’s stable, well document-

ed, battle tested, and has a large and active developer community that can help to answer our questions

when we run into trouble.

01
CHAPTER 01
FIRST STEPS. FIRST LAMBDA

In this chapter we will create a framework for the application using an approach in which the lambda func-
tions are independent and located in different directories.

We will:

 • Implement a simple lambda function capable of returning a fixed object.

 • Create the application using SAM using an IaaC approach.

 • For local development, we will install a plugin for VSCode with which we can run the lambda locally
 in debug mode.

 • Deploy the lambda from the development environment or using console commands.

Code can be found here.

https://github.com/akoval/serverless-bugtracker/tree/chapter1

6

Where to begin?
First we need to prepare our environment:
Pick your favorite development environment (We will use
VSCode)
Docker containerization system
AWS account with full privileges (we will touch on this
issue in more detail later)

 Let’s start with the components that make up a clas-
sic serverless application - Amazon provides the AWS
Lambda service. Lambda functions are functions that
handle events from various sources, ranging from mes-
sage queues to file update events from S3. The lambda
function takes as input a json object as the input repre-
senting an event, does whatever it needs to, and then
returns a response.

Choosing our programming
language
And here we have our first serious decision: what lan-
guage will we program in? It would seem that we can
choose as we wish, but everything is not so simple, and
in order to understand the nuances of this question, we
are going to need to dive a bit into the documentation
and consider how lambdas work.
The life cycle of a lambda consists of three phases:
 • Init
 • Invoke
 • Shutdown
As the name implies, during the Init phase, the run-
time environment where the lambda code will execute
is stood up, the lambda function code is downloaded,
and the constructor and initialization code is launched.
This phase “raises” the lambda into the cloud. This init
process happens once during the lifetime of a lambda
function instance.

After the init phase comes the Invoke phase. In the
Invoke phase, the lambda function handler code is
directly called. Unlike the Init phase, which occurs once,
this phase can be repeated many times depending on
how many events are available for processing. Once the
handler has returned, Amazon freezes the environment
until there is a new event to handle. When a new event
occurs, Amazon “unfreezes” the environment. If a critical
error occurs while a phase is running, or if the runtime is
out of bounds, then Amazon tries to recreate the run-
time.

Chapter 01: First Lambda: Programming languages

7

So what does all of this have to do with our choice of programming language? Well, our choice of language
directly affects the Init phase. We have an uninstantiated lambda definition waiting for events to arrive.
Then, our first event arrives. There is no instance of our lambda in the cloud to handle this event (this also
happens when all existing instances are busy processing other events). AWS starts creating a new lambda
instance for our event. The init phase “fires”. At this point, we are just waiting for the working environment
for the lambda to show up. None of the useful work defined in our lambda has begun processing. After the
init phase has completed we can move on to begin doing our real work. This situation is called a cold start
- when there are no instances of functions available for processing and it takes time to instantiate these
function instances (just like we spend time warming up a car engine in a Minnesota winter). The faster the
Init phase passes, the faster the event processing will begin, the faster the client will receive a response, the
faster the response time will be. Due to its nature, cold start is different for different programming languag-
es.
 For interpreted languages (Python, Nodejs) it is significantly faster than for compiled ones (java, c#). But
compiled ones have an advantage in better use of resources, so lambdas have a higher “efficiency” if you
need to use several cores or more of memory. Therefore, if you need to minimize cold start time, interpret-
ed languages may be the correct choice. On the other hand, if you need to optimize for resource utilization,
then compiled languages may be a more appropriate choice.
The results of a small test of cold-start time of a lambda “Hello World” handler written in different program-
ming languages are shown below.

Based on this data and on our knowledge of Java and Javascript, we have opted to proceed with Node as
our language of choice.

Chapter 01: First Lambda: Programming languages

8

We will start with a lambda that will get information about our project. In principle, you can write code direct-
ly in the editor in the Amazon Console. It is enough to create a boilerplate “Hello World” lambda, then you
can edit the code of this lambda function. Obviously, this option is doomed in any non-hello-world project,
it will be not be impossible to build a normal CI / CD pipeline, and in general it will be inconvenient. You can
create a lambda from scratch, or you can use a ready-made template as a basis. The SAM framework will
help us with this, an extension of AWS CloudFormation (hereinafter referred to as CF) for Serverless applica-
tions. The SAM framework can create a lambda function hello-world template for us, help with deployment
to the cloud, and more.

Here we have an example of the SAM framework hello-world template. The following console command will
create a hello world project with a lambda function using Nodejs, and the created lambda function will be
packed into a zip archive when built.

The structure of the first lambda function is as follows:

Chapter 01: First Lambda: Project Structure

template.yaml — this is the SAM framework config describing the components that are involved in our proj-
ect. The SAM template is compatible with the CF template. It adds ways to quickly and easily create server-
less application-specific resource types (lambdas, api gateway, etc.). CF will deploy resources from this
config that are specified in it. If 10 lambda functions, RDS, SQS are described in template.yaml, then it will
create it all. But here it is necessary to observe the limits of reason, because even in the serverless world,
you can create a serverless monolith, when dozens of different resources that may not be related to each
other are in the same config. This approach makes the application more difficult to maintain.

Project Structure

Project Structure

9

Chapter 01: First Lambda: Project Structure

An application with lambda functions is very similar to an application with a microservice architecture. Each
lambda can be thought of as a separate microservice. Therefore, for maximum isolation and independence,
we will place the function code in different folders, with their own separate independent package.json. We
will leave the root package.json to run the tests.

Final project structure:

Let’s pause for a minute and take a closer look at template.yaml. What parts does it consist of, and what are
they for?

10

SAM Template

There is a separate block for text a descrip-
tion and global settings:

One of the most important blocks is the re-
source description block, it describes all the
resources for deployment: lambdas, data-
bases, and other services. For example, the
following is an example of a lambda function
description.
Any resource in a template has a unique
logical name. Using this name, you can
access the properties of this resource. In our
example, the logical name of the function is
GetProjectByIdFunction.
 The Runtime variable tells you which envi-
ronment to use to run the code.
 The CodeUri and Handler define the path to
the The Events block describes the kinds of
events handled by the function.

Let’s start with the mundane bits, which
contain information about the version of the
CF template format and that inform us that
we are dealing with a SAM template:

And the last block that we need to concern ourselves with at this point is the Outputs block, which spec-
ifies the results of a deployment. It makes sense to add values to this section that may be required for
further work or for integrations, for example, the URLs of the created APIs, the hostname of the instantiated
database, and so on. Amazon shows these values in the console after deployment. Values are displayed in
plain text, so you should never show passwords or secret keys in this block.

 As you can see from the snippets, SAM also creates an API whose requests are processed by lambda func-
tions. In Outputs, in addition to the lambda function identifiers (all resources in Amazon have a unique ARN
identifier), the URL for interacting with this API is returned. While I will concentrate on lambda functions,
 I will return to building the API later.

Chapter 01: First Lambda: SAM Template

11

Running the lambda function

Our first lambda function will return fixed data by project ID:

Amazon supports several approaches to writing nodejs handlers:
 • Using async/await constructs. In this case, the handler can return a value or a promise.
 • Use of callback functions. In this case, a third callback argument is added to the handler which will
 be called upon completion.
 • Representation of the handler in the form of an ES module (more recently, the nodejs environment
 began to support this feature)

We will use the first approach, since it is more convenient and familiar to us.

Cool, everything seems to be ready for the first launch. We want to be able to run lambda functions locally
in debug mode, so we can quickly find and fix bugs, and check that everything works as it should. SAM has
the ability to run lambdas locally. For local launch, a special docker image from Amazon is used. The con-
tainer created in this way differs little from the runtime in the cloud.

Chapter 01: First Lambda: Running the lambda function

12

A nice aspect of the previously chosen project structure is that all artifacts will be independent and will not
contain code related to other lambda functions.

There are other approaches you can take to the structure of the project. Even in the examples from Ama-
zon, you can find the option where the files of all functions are in the same folder with one package.json, the
CodeUri parameter also points to the same directory (or is absent altogether). Sample project with multiple
features from Amazon:

Chapter 01: First Lambda: Running the lambda function: Running Locally: Using SAM

Running code locally

There are several ways to run code locally, building and running with SAM and launching with VSCode.

Building and running with SAM
Before the code can be run locally in the console, it must be built. The application is built using the following
command:

This command prepares artifacts for later deployment or launch. The build result for each lambda function
is in a folder that contains all the files from the directory specified in the CodeUri in the template. If the
CodeUri is empty, then all files from the root directory are copied. Also in this folder, all dependencies from
package.json are installed, which is located in the folder specified in the CodeUri.

13

Function declaration in SAM template:

With this alternate approach to project structure, the artifacts for different functions will be identical. For ex-
ample, the first lambda works with the database, and the second one works with S3. The artifact of the first
and second lambda will have both dependencies. With this approach, complete isolation is not obtained,
moreover, the same dependencies are repeated many times.

The “sam” build command has a couple of useful options. The -p switch allows you to build in parallel. By de-
fault, all resources are collected sequentially. The -c switch allows the assembly to be cached. If there were
no changes in the files, then the cached artifact will be reused without recompilation. If the project structure
is used with a shared folder for all functions, then the -c key will not work, SAM will rebuild all the functions
specified in the template each time, since it will always see changes. Using separate folders allows SAM to
clearly identify changes and collect only the changed parts of the application. In general, these keys allow
you to speed up the assembly and not do extra work.

By default, the build takes place in the ./.aws-sam/build folder. In addition to the function artifacts, there is
also template.yaml in ./.aws-sam/build. This file is similar to the file from the root of the project, only all the
functions in it are set to the build directory ./.aws-sam/build.

After running the build command:

Chapter 01: First Lambda: Running the lambda function: Running Locally: Using SAM

In the console you can see hints from SAM on further actions:

14

Optionally, you can specify the event that should be processed by the function. The -e switch is used to
send an event. If it is not specified, the event will be empty. You can specify the path to a file with a json
object representing this event, or specify - so that the event is read from stdin.

The first run usually takes a long time because the docker image is downloaded. At the end of the work in
the console, you can see the result of the execution:

As you can see from this tip, to run a function locally, you must use the local invoke command. To run, you
must specify the function name (logical name from the template).

Chapter 01: First Lambda: Running the lambda function: Running Locally: Using SAM

Launching with VSCode

You can run a function locally directly from VSCode. To do this, we need a plugin for VSCode AWS Toolkit.
This plugin will allow you to quickly deploy from your favorite development environment, set breakpoints
and inspect your code. After installation, you need to configure it - add account credentials so that the
plugin has access to the cloud.

The plugin offers several modes:

After installing the plugin, the command to create a launch configuration appears above the function:

15

Chapter 01: First Lambda: Running the lambda function: Running Locally: Using VSCode

Where the VSCode approach differs from using the SAM template is only in the type of event with which
the function is called. In the first case it can be an arbitrary event, in the second case it is an http request.
VSCode will create a .vscode/launch.json file containing the lambda function local launch setting. We will
run the lambda in the first way, and will return to working with the API in subsequent articles. You will get
the following launch config in VSCode:

The third option simply runs the code from the directory, in which case the code in the SAM template is
ignored.

For the third option to work, you will
need to install the typescript compiler
using the following launch
configuration:
./vscode/launch.json

In the payload section, you can
specify a json object - an event that will
be processed by the function.

The result of running any of the options is the same - the application is launched locally in debug mode.
The plugin uses the same “sam” build and “sam” local invoke commands, just with a different build
directory.

16

Now we will make the first deployment to the cloud. As with running locally, this can be done in two ways.
The first way is to use the console, the second way is to use the plugin. We will evaluate both options.

Approach 1: Deployment using console commands

Let’s try to make a deployment, armed with a console and SAM.

Before you can start deploying the application, you need to build it. Let’s take a look at the above command.

For deployment, we need the “sam deploy” command. The sam deploy command archives and copies the
collected artifacts to an S3 bucket and deploys applications to the cloud. All collected resources are creat-
ed inside the stack. A CF stack (hereinafter simply a stack) is a set of resources in the cloud that have been
deployed using a CF template. Each stack has a unique account name. For now, it is better to run the com-
mand with the --guided key. Then the interactive mode will start, where you will need to enter the name of
the created stack, the region, the name of the S3 bucket for storing the code, and so on.

But the most interesting thing in this mode is that all selected options can be saved in a separate file with
a specific profile (the default file is samconfig.toml, the default profile name is default). Then next time you
won’t have to specify any parameters other than the profile name.

Here everything is saved under the chapter1
profile.
samconfig.toml

The next time you want to deploy, simply
provide the profile name:

Chapter 01: First Lambda: Running the lambda function: Cloud deployment: Using console commands

Cloud Deployment

Approach 2: Plugin Deployment
When you right-click on the template.yaml file, a new item “Deploy SAM Application” will appear in the con-
text menu. The plugin will ask:

Which template file to expand (We have
only one):

17

AWS Region:

s3 bucket that SAM will use. You can
create a new one:

CF stack name:

After going through all the steps, AWS Toolkit will run “sam build” and then “sam deploy”. The only differ-
ence is that the build directory is different from ./.aws-sam

Unfortunately, the plugin does not know how to remember the choice of parameter values, so each time you
need to enter the same data. In this regard, launching through the console is more convenient.

Chapter 01: First Lambda: Running the lambda function: Cloud deployment: Using a Plugin

In both cases, at the end in the console, we see the reassuring line “Successfully deployed SAM Applica-
tion to CloudFormation Stack: serverless-bugtracker-ch1”.

And boom! Our lambda is deployed to the cloud.

Amazon has provided a default name for our function:

18

In the SAM template, we don’t provide a function name. Amazon takes the stack name, the logical name of
the function in the template, and adds a random sequence of characters.
You can avoid this default naming convention if you use the FunctionName property in the SAM template,
then the function name will be the one that you specify in this field.

The function can be tested using AWS Console. If you open a lambda function, it will have a special tab, test.
Here I can send any json as an event (similar to the payload json I used in local launch):

Chapter 01: First Lambda: Running the lambda function: Cloud deployment: Using a Plugin

Our Bug Tracker REST API Example project requires a classic relational database, so we will stick with
MySQL. Amazon provides the AWS RDS cloud service for working with databases.

Chapter 02: Spinning up a database

02
CHAPTER 02
SPINNING UP A DATABASE

In this chapter we will:

• Create a separate SAM template to deploy the shared global resources

• Using SAM, deploy the database in a separate VPC. The new resources will be deployed on the stack un-
der the name serverless-bugtracker-global-resources

• Configure a cross-stack reference for parameter passing across the deployed stack.

Code can be found here.

https://github.com/akoval/serverless-bugtracker/tree/chapter2

20

Database Application Architecture

In order to deploy a database in AWS RDS, you first need to create a VPC (Virtual Private Cloud). VPC — this
is a way to organize a dedicated virtual network in AWS. We will get a virtual private network in which we
will deploy all the resources of our project. After creating a new AWS account, there is already a default VPC
that AWS has created for us. But it is good practice to create a separate VPC for the needs of the project,
the so-called project VPC - this will allow you to safely and conveniently organize a completely isolated infra-
structure for the project. So, for our project, we will create a separate project VPC, in which we will deploy all
the resources necessary for our project.

AWS VPC has the concept of public and private subnets, (their intended purpose is easy to grasp from
their names). In our case, it makes sense to deploy RDS on a private subnet, because in fact, apart from
our lambda functions, no one else will access the database. Plus, this is a more secure and simple at first
glance mechanism for organizing access to the database - that is, this is approximately the picture that was

And now the final result that was implemented:

As we can see, many resources have appeared that were not originally there. These are the reasons for the
appearance of some of these resources:
 • The Internet Gateway and NAT Gateway are needed so that our lambda can interact with the Inter-
net. Since, after the lambda is launched in the VPC, without these resources it will not have access to the
Internet.
 • A public subnet is needed for NAT Gateway to work.
 • An empty private subnet is needed for RDS: one of the requirements when creating an RDS is to
have two subnets. According to the AWS documentation, the second subnet is used for storing backups
and logs, and can be used for high availability purposes in case of Multi-AZ deployments.

Chapter 02: Spinning up a database: Database application architecture

21

How can all this be created?

The abundance of resources suggests that doing such things manually is something akin to signing your
own death warrant.

In this case, a mix is obtained from a SAM application, which is deployed by two teams using the IaaC ap-
proach, and “manual” resources. In our application, we will achieve maximum uniformity and automation so
that in the future it will be easy and quick to set up CI / CD.

We have SAM. Will it be able to deploy such an infrastructure?

At the beginning of this guide, we mentioned that SAM is an extension of CF for Serverless applications.
That’s to say that SAM adds resources specific to the serverless approach without limiting the use of regu-
lar CF resources in the sam template. To deploy VPC, RDS, NAT, we will use standard resources from CF.

Chapter 02: Spinning up a database: Organizing SAM

22

Organization of SAM templates in the application

We have decided on our tools. Now we need to decide how will we organize our SAM and CF templates Will
we use one template for all resources?

This approach should only be seems to be temporary. With the growth of objects, it will become difficult to
maintain a constantly growing file, so some kind of decomposition is required.
AWS provides several options for organizing resources:
 • Use the AWS::Include macro.
 • Use Nested Stacks.
 • Use a separate independent stack for RDS and related resources.

We will compare approaches in order to choose the most convenient and suitable.

Option 1: Use the AWS::Include macro

This method is as easy to understand as possible:, the macro allows you to insert a fragment into the con-
figuration file.

(./global-resources/rds.yaml)

This option is suitable when:
• You already want to make some kind of logical breakdown in a small template

• You want to reuse some fragments in one or more CF templates.

It is not suitable when:
• You plan to create a sprawling layered structure of nested resources (Amazon does not allow an Include to

be included in another Include fragment).

• The number of resources in a template approaches AWS limits.

Here is an example template.yaml with
AWS::Include:
(./global-resources/template.yaml)

At the time of deployment, CF will replace this macro with a fragment and then it will work with the changed
configuration file.

Chapter 02: Spinning up a database: Organizing SAM: Using the AWS::Include macro

23

Option 2: Use Nested Stacks

Inside the root template, resources of the type AWS::Serverless::Application are created. Each such resource
is a nested CF stack. Expanding the root stack will expand all of its nested stacks.

(./global-resources/rds.yaml)

This approach allows applications to scale and create more resources than can be supported in a single
file.

This option is quite versatile. You can break the application into arbitrarily complex parts and develop these
parts separately from other stacks.

The structure is as follows:
(./global-resources/template.yaml)

Unlike Include, which only inserts a config fragment, AWS::Serverless::Application resources are full stacks
that can be developed and deployed separately.

Chapter 02: Spinning up a database: Organizing SAM: Using Nested Stacks

Option 3: Use a separate independent CF stack for RDS and related resources

The most obvious option is to make a separate independent stack. Separate file, separate stack, no links
between configuration files.

However, because the Nested Stacks method covers all occasions, this method appears superfluous. When
would this approach be useful?

24

Thus, the third option is applicable in the case of the existence of global resources within the project, when
one resource is used in several environments.

Examples: a shared database, a shared VPC (in which all application elements are running), shared roles,
etc.

Chapter 02: Spinning up a database: Organizing SAM: Using a separate CF stack

Our application requires a datastore. To save money, we can use the same DB Instance for multiple environ-
ments by using different database names at the MySQL level. We can also use this instance for local devel-
opment. Then Dev, QA, feature environments will live within one database instance.
Using the first or second approach will deploy a separate DB Instance for each stack. Of course, the more
developers in the team, the more feature environments will be required, and the more our AWS environment
will cost each month.

25

The final structure of the files in which the application resources are located will be as follows:

Where:
./global-resources/template.yaml - global resource template
./global-resources/rds.yaml - nested template for database settings
./global-resources/vpc.yaml - nested template for VPC settings and related resources
./template.yaml - template for serverless application resources (lambdas)

Organizing SAM templates in the application

For our bug tracker REST API example, we see no reason to overpay for separate databases on each envi-
ronment, so the database will be global. Accordingly, we settled on a combination of the second and third
options: the third option is for organizing global resources that are common between environments, and the
second is for decomposing one large stack into parts. Inside the stack with global resources, we have two
components: RDS and VPC. For ease of support, we will place them in a separate nested stack.

Chapter 02: Spinning up a database: Organizing SAM: Combined approach

26

Deploying a database using a SAM template

VPC setup
We’ll start by setting up the VPC and the components associated with it. To simplify the creation of a VPC
and all related resources, the easiest way is to take an almost ready-to-use template from AWS as a starting
point. - AWS CloudFormation VPC template - AWS CodeBuild. It implements a VPC with two public and two
private subnets, Internet and NAT gateway, necessary routing tables, etc. But we have to slightly tweak the
specified template to meet our needs - in particular, we need to remove the second public subnet and NAT
Gateway for it, as well as some of the template parameters.

Some points of clarification:
For the nested vpc.yaml stack, we have made the RootStackName
parameter. This value (the name of the parent stack) is actively
involved in the composition of resource names. We did this on pur-
pose so that the names can quickly and easily identify the applica-
tion and the parent stack.

Lambda functions need to set up VPC parameters, but the corre-
sponding resources are in a different stack. We cannot directly use
resources from other stacks. For these purposes CF has a cross-
stack reference mechanism that provides the ability to refer and
use data between stacks.

To create a cross-stack reference, use the Export setting for the
Outputs data. This setting specifies a region-unique name in the
AWS account.

To import this value later, you need to know the Export name and
the stack name. Creating a VPC and all related resources is im-
plemented as a separate nested stack. The name of this stack is
derived from the name of the parent stack, the logical resource
name AWS::Serverless::Application in the parent template, and
an additional Amazon-generated string. If we recreate the nested
stack, then this generated string will be different.

It turns out that the nested stack name can change, unlike the
parent stack name, which we set ourselves. It is more convenient
to work with immutable names. Therefore, we have configured the
export of variables from the parent template ./global-resources/
template.yaml.

Chapter 02: Spinning up a database: Deploying a database

The template for creating a VPC is actually quite large, so we will not give all the contents here, instead small
fragments will be provided. The final results can be viewed at the above link.

27

VPC Setup

Thus, in order to make data from the VPC stack available to other 3rd party stacks, we need to:
 1. Pass the desired values from ./global-resources/vpc.yaml to ./global-resources/template.yaml.
 2. Set Export for Outputs values in ./global-resources/template.yaml.
 (vpc.yaml):

Previously, we used the Outputs block in the template just to see the output values in the console. Now we
use them to pass data from the nested stack to the parent.
The Ref function can do two things:
 1. Return the parameter value by its logical name.
 2. Return resource id by its logical name
 (./global-resources/template.yaml).

From the vpc.yaml nested stack, we returned the PrivateSubnet00 and LambdaSecurityGroup IDs. Using
CF’s built-in GetAtt function, any resource property can be retrieved. Including the Outputs properties from
nested stacks.

The built-in Sub function replaces ${MyVar} variables in a string with the given values. In our case, we use
the AWS::StackName global variable, which is replaced with the name of the stack where the deployment
takes place.

Chapter 02: Spinning up a database: Deploying a database: VPC Setup

28

RDC Setup
Now it’s RDS’s turn. As in the case of the VPC, we will pass the RootStackName parameter to name the
resources
./global-resources/rds.yaml:

In the DBInstanceIdentifier property, we set the instance name, which is assembled from the stack name.
We also made the type of the instance and the size of the disk for the database a parameter. These are the
parameters that will differ for instances on different environments, for example, production machines can
be much more powerful, but at the same time a db.t3.micro instance may be enough for development and
lower environments.

We already have a VPC, so we need to register it in the RDS settings along with subnet add-ons, this is
required to run RDS on a private subnet. To do this, we need to pass parameters from vpc.yaml to rds.yaml.
Since both of these stacks have the same parent, to transfer data between them, we just need to pass pa-
rameters through the parent stack to transfer data between them.
./global-resources/template.yaml

The “DependsOn” property allows you to set the order in which resources are created. Obviously, the RDS
resource must be created after the VPC.

Chapter 02: Spinning up a database: Deploying a database: RDC Setup

29

To run a database in a VPC, you need to configure DBSubnetGroup and VPCSecurityGroups.

./global-resources/rds.yaml

Chapter 02: Spinning up a database: Deploying a database: RDC Setup

30

Storing settings in the cloud

Another important consideration when creating an RDS is how to set the necessary login, password, and
database name. As you can see, right now we just have the values hardwired into the template, which, of
course, is unacceptable in a real normal project.

You could take advantage of the CF parameters that can be passed during stack creation where the param-
eters will be passed in the clear to the CF. But this approach is not suitable for passing secret parameters
(passwords, keys). And it’s inconvenient, because these parameters will have to be entered every time you
deploy. You could, of course, set default values. But this will result in account names and passwords being
presented in text form in the template code.

The best option is to use one of the AWS services for storing parameters. When using such services, our
template will not have parameters in clear text.

Amazon provides several services for storing various parameters, including secret data (passwords, keys,
tokens, etc.):
 • Systems Manager Parameter Store (further SSM)
 • Secrets Manager
 • AppConfig

From the point of view of storage and use, Secrets Manager and SSM services have very similar basic func-
tionality, but Secrets Manager, unlike SSM, has several additional features:
 • Scheduled password generation.
 • Password rotation for RDS, Redshift, etc.

Accordingly, it makes sense to use Secrets Manager if the above functionality is needed in the application.
Also, worth considering, Secrets Manager costs a little more than SSM Parameter Store.

AppConfig is a service that allows you to work with the entire configuration at once (whereas the other
services essentially allow you to work with parameters individually). For configuration changes, an analog of
the CD (continuous delivery) process is provided when these parameters are gradually or immediately ap-
plied to the environment. This service is well suited for changing dynamic settings, while the first 2 services
are tailored more to work with static, unchanging (or rarely changing) parameters. The ideal scenario for
AppConfig is feature toggles.

Chapter 02: Spinning up a database: Deploying a database: Storing settings

31

For our bug tracker REST API example, we do not plan to do automatic password rotation given that our
scenario is quite simple, and that the parameters will not change in the process of running the application
on the fly, so we will use the SSM service for our application.

SSM stores any parameters as a regular key-value storage. There is a special secured data type for secret
parameters. We will store the login in the usual String field, and we will put the password in the Secure-
String field. CF can be used to create parameters in SSM. But this only works for regular data types.

The secured field will have to be created by hand. For consistency, we will create all the parameters in SSM
by hand.

As long as we have only one service/component in our account we can name our parameters whatever we
want. But as soon as there are more applications, we will have to put things in order so instead we will do
this proactively. It is good practice to store parameters in a hierarchical model, such as /{environment}/{ser-
vice}/{parameter}. This will allow us to freely navigate dozens of different values for different applications
and environments in the future. For now, we have 2 global settings (login and password) and one that will
be different on different environments (database name on the server):

Chapter 02: Spinning up a database: Deploying a database: Storing settings

The only thing left is to pass the RDS parameters and settings to the appropriate properties.
There are two ways to work with parameters in a SAM/CF template:
 • Use stack parameters.
 • Use dynamic links.

Option 1 Use a section in the SAM template - Parameters.
In this block, you can describe the template parameters, the values of which we can set when deploying the
stack.

CF will take the parameters from the SSM
with the key name specified in the Default
value. Now we can work with the DbLogin
values in the template using the function
Ref:

To use a value from SSM as a parameter
value, you must specify the AWS::SSM::Pa-
rameter::Value type:

 But this approach is not supported in CF with SecureString options so what are we going to do about
the password?

32

Option 2. Use dynamic links
A dynamic link is a line of the form:
‘{{resolve:ssm:parameter-name:version}}’ - for regular parameters.
‘{{resolve:ssm-secure:parameter-name:version}}’ for encrypted parameters.

CF replaces these dynamic references to specific resources when deploying code. However, dynamic links
have limitations - SSM-secure parameters are supported only by a limited list of services, including RDS,
Redshift. For example, you can’t pass parameters to lambda functions this way.

For RDS settings, when transferring passwords we can only use dynamic links, but when transferring a login
both options are viable.

Chapter 02: Spinning up a database: Deploying a database: Storing settings

In order to avoid mixed metaphors in our configuration file we will use dynamic links in all cases.
However, if these values were used several times in our template, then the use of dynamic links would be
less convenient. In the case of renaming the parameter name, you would have to change the code in several
places.

./global-resources/rds.yaml:

Each entry in SSM has a version. You can refer to a specific version of the parameter from the change histo-
ry, or you can always use the latest version. If the version is unspecified CF will take the latest one.

If you look closely, you can see that Amazon adds a generated string to each nested stack. The stack is
created in the cloud and now we can use the following variables in other templates:
 serverless-bugtracker-global-resources-LambdaSecurityGroup
 serverless-bugtracker-global-resources-LambdaSubnet

We will leave out the questions about creating the database structure, and how the data ends up there, after
all, the article is not about that. These can be ordinary DDL scripts, or these data and tables can be created
by hand. You can use special programs to manage the database structure: flyway or liquibase
among others.

So, the VPC is ready, the database is ready.
Lets deploy our new stack in the cloud under the name: serverless-bugtracker-global-resources. AWS has
created several stacks:

03
CHAPTER 03
HOW TO MAKE FRIENDS WITH
THE DATABASE

In this chapter we will write the code that will interact with the database. For convenience, when deploying
code in this chapter we will use a separate serverless-bugtracker-ch3 stack. For this stack, we will add a
new profile to ./samconfig.toml.

We will have the following intermediate results:

• There will be a lambda function that subtracts an entry from RDS by ID.

• There will be a SAM template that allows you to deploy the entire application (lambda function + database
+ VPC settings).

• The Lambda will works both locally and in the cloud, without putting undue constraints on the developer.

• Common dependencies and auxiliary utilities will be separated into a separate layer, which is shared
across all functions.

•We will move from initial stub code to integration with the database and have gained sufficient knowledge

Code can be found here.

https://github.com/akoval/serverless-bugtracker/tree/chapter3

34

Setting up work in VPC
 In order for the lambda function to be able to access the database in RDS, we need to configure it to work
in the same VPC where the database is already deployed - otherwise there will be no access to the data-
base. By default, there is a separate VPC for lambda functions in the AWS cloud, and of course, it is not
related to our project VPC in any way.

To run the lambda in our VPC, we need to add the VpcConfig property with two parameters pointing to the
subnet in which the network interface for the lambda will be created, and to the corresponding security
group. All necessary VPC resources have already been created, and a cross-stack reference for VPC param-
eters has also been configured.

The global resources are deployed on a stack named serverless-bugtracker-global-resources. We don’t
want to hard-code the name of this stack into our template, so in ./template.yaml we’ll make a new Global-
ResourceStack parameter - the name of the stack with global resources. This is just in case we want to
rename the stack with global resources, or if we want another DB environment for some experimentation.

The default value will be serverless-bugtracker-global-resources, so it will take less fiddling to deploy the
main stack. Parameters are imported using the ImportValue function, which returns a value from another
stack using cross-stack-reference.

./template.yaml:

Chapter 03: Making friends with the database: setting up work in VPC

35

Integrating lambda functions with the database
To create a connection to the database, you need to know the login, password, database name, and RDS
host name. Obviously, storing these parameters in a lambda function is a very bad decision. All values ex-
cept host are already stored in SSM and you will need to pass this data to the function.

Passing the login and database name
As we discussed in Chapter 2, you can get regular (not secured) SSM parameters in a CF template through
dynamic links or stack parameters.

For lambda functions, dynamic references
do not work, so we will use stack parameters
to pass values from SSM:

Now these parameters can be passed to the
function. The lambda function has a special
Environment setting for passing parameters:
./template.yaml

Passing the DB host name
In order to create a database connection, you need to know the RDS host. This value can be obtained from
the resources that are specified in the rds.yaml template. We already set up a cross-stack reference for VPC
parameters

Now we will do the same for the host.
(./global-resources/rds.yaml):

Chapter 03: Making friends with the database: Integrating lambda functions

36

Now you can use the variable in the
lambda:

All possible parameters have been passed through environment variables leaving the password to be
passed to the lambda in a different fashion.

Supplying the password
Of all the parameters, only the password remains. Neither stack parameters nor dynamic references are
suitable for passing secured data. So how can we proceed? There is one more option - to independently
receive the parameter in the function code, using the client code.

To implement this option, you need a client for the SSM service:

Obviously, if we request a parameter on each request, then we will experience significant slowdown. In, in
addition, there is a limit on the maximum number of requests allowed to the SSM service API (40 requests
per second by default). Therefore, the parameter must either be read rarely, for example, once during the
entire operation of the lambda function, or this value must be cached for a reasonably long period of time.

 Another advantage of caching is the ability to detect changes in SSM. If we change a setting in SSM, then
our functions will apply the new settings after some time without rebooting or updating the environment.

Export the variable to ./global-resources/
template.yaml:

Chapter 03: Making friends with the database: Integrating lambda functions

37

Since we are not planning to support changes in the settings, and in general the database connection pa-
rameters are unlikely to change, we will read the parameter once. In this case, we will increase the cold start
time, but will not increase the processing time for subsequent requests:

./src/handlers/get-project-by-id/app.js

The fetchParamsPromise variable will be calculated once during the lifetime of the function instance, and
the result of its execution will be used each time the instance processes another request.

Chapter 03: Making friends with the database: Integrating lambda functions

All code outside of the main lambdaHandler runs in the Init phase of the lambda function.

In general, any initializations are best done outside the request handler for several reasons.

 • First, the initialization phase is free. Amazon doesn’t take this phase into account when it calcu-
lates fees for using lambda functions. Therefore, to save money, it makes sense to use the Init phase to the
maximum by placing the initialization of variables and data preparation there when possible. That said, we
must remember that the Init phase is not an infinite resource and should not exceed 10 seconds. Other-
wise, Amazon will consider running your lambda an error and will try to create it again, but this time it will be
charged.

 • Second, during the Init phase, Amazon provides more computing power. This means that

computation logic can run much faster if it is run in the initialization phase of the lambda function.

38

For our bug tracker REST API example, we create a promise in the initialization block that requests data
from SSM.

Unfortunately, we can’t wait for the result of execution in the initialization phase, due to the asynchrony of
ssm-client. And in fact, the response is received when the event processing has begun. In our case, this
would hardly have affected anything, because I / O operations work the same regardless of the phase in
which they occur.

(Not long ago, AWS has started supporting awaits declared at the top level (outside of async functions),
but this only works for ES modules.)

Chapter 03: Making friends with the database: Integrating lambda functions

Querying the database
Now we can start integrating with RDS. Since each instance of the lambda function will process exactly one
request synchronously, there is no need to implement connection pools. In the lambda function handler, we
will create exactly one connection.

If we create a connection to the database on each request, then the time of our function will be longer and
this time will incur fees. Ideally, we can create a connection outside the function handler, but getting SSM
parameters is possible only inside an async function (for non-es-modules), so the creation of the connec-
tion will have to be placed in the function handler. But we must take care that the connection is created
once for the entire lifetime of the function instance.

All values passed in the template via Environment.Variables become available in the code as global vari-
ables, so there is all the data to create a connection:
./src/handlers/get-project-by-id/app.js

39

Chapter 03: Making friends with the database: Integrating lambda functions

When implementing handlers, keep in mind that all asynchronous actions that are performed in a lambda
function must be completed before the handler returns a result. In our case, until the last return. This is a
consequence of how AWS treats the runtime after the event has finished processing. ./template.yaml

As we mentioned in Chapter 1, after the Invoke phase has finished (after the handler has returned), AWS
“freezes” the runtime if no further events occur. Incomplete actions can lead to interesting situations.

For example: suppose, in addition to the main logic, in our function it is requires us to update some counter
in the database, and we do not expect this operation to end. We would perform an UPDATE but did not ex-
pect the result. It is possible that AWS will “freeze” our environment during this operation: the request may
not have time to reach the database, and the lambda has already returned a response, thereby provoking a
“freeze”. The subsequent event will unfreeze our runtime and our operation and only then will our counter
finally be updated.

What does this imply? If you do not wait for asynchronous computations to complete, then the results of
these computations may appear with a delay. Therefore, it is always necessary to complete such calcula-
tions before the final return of the lambda.

40

Launching the function
Our lambda is ready. Now we will check if it runs locally. We discussed launch methods in the first chapter.
Since global variables are heavily used in the code of our function, a simple local launch will lead to errors.
When running locally, SAM does not get parameters from SSM, so you need to fill in these global variables
yourself.

If the launch is carried out using a plugin, then the settings are transferred through the VSCode configu-
ration file. For these purposes, the environmentVariables section is provided in the settings, in which it is
necessary to set the environment variables:

./vscode/launch.json

Parameters are passed during console launch using a special file. The content of this file is a regular json
object. The keys are the logical names of the functions from the template, and the values are an object with
variables:

./env.json:

This file must be passed at startup through the console

We run our lambda and get an error when connecting to the database:

Chapter 03: Making friends with the database: Integrating lambda functions

41

A similar error occurs when any client tries to connect. The reason lies in the VPC. We set up lambda access
to the database in the cloud, but did nothing to get access from the local machine. Considering that our
database is running on a private subnet in AWS, in order to fix this problem, we need to provide access to
the database from the local environment.

Globally, there are several possible options for organizing access to the database:

1. Make the database publicly available with a reasonable level of security. Yes, for this project we made it
private for a number of reasons, but perhaps for your tasks, the option with a public database for which se-
curity measures have been taken is viable. For example, if you have a static IP, then by setting the Security
Group you can restrict access to the database only from your IP. In this case, there will be no problems with
access to the database when the lambda is launched locally.

2. Making the database private: 3 Ways:

01 Run a separate test database locally.
For example, in a separate docker container or directly on the local machine. That is, the database in RDS
remains and will work for the lambda in AWS, and for local testing and development, a separate instance of
the database will be used, running, for example, in a Docker container on the local development machine.
In principle, there are no special problems with this option - it works fine and in fact does not require global
changes. The only thing to do is to use the service’s local MySQL address to run locally.

02 Create a VPN connection and connect to the database via VPN There are two ways to implement this
option:

A. Manually install and configure OpenVPN on a separate EC2 instance. In this case, you need skills in con-
figuring the VPN service and routing in AWS. Plus, do not forget about the cost of a constantly running EC2
instance.

B. Use a ready-made VPN service from AWS. The service is called AWS Client VPN and allows you to con-
nect to a VPC using an OpenVPN client. Of the pitfalls when setting up this service, we can note the need
to generate / add SSL certificates - you can do this yourself or use a ready-made certificate authority from
AWS - ACM Private CA. And if in the case of the first option only the skills of working with OpenSSL are

required, then the second option requires significant additional financial investments (~ $400).

Chapter 03: Making friends with the database: Integrating lambda functions

42

In general, this VPN option requires some technical knowledge and skills in working with AWS/VPN/SSL. At
the same time, the cost of this option will be quite high - according to our calculations, current at the date of
publication of the article, it is about $80 per month if you generate certificates yourself, or about $480 if you
use the ACM Private CA service.

03 Make an SSH tunnel to RDS.
This option actually also implements a private tunnel to RDS, but does it through the functionality of the
SSH protocol. This option will require the presence of an EC2 instance, through which traffic will actually be
tunneled to RDS.

Each of these options has its pros and cons - for our bug tracker REST API example project we implemented
an option with a VPN service from AWS and self-preparation of the necessary certificates for its operation.

Yes, the cost of this solution is quite high, but in this case it is not a long-term solution, and we enjoyed the
added benefit of getting acquainted with this service from AWS at the same time.

Which of the options is preferable for your case depends on the requirements / capabilities, etc., but the
result in any case should allow you to fully work with the database when running the lambda locally.

Instructions, as well as code for deploying the AWS VPN service option, can be found in the project repository
at the following link.

Chapter 03: Making friends with the database: Integrating lambda functions

43

Take 2: Launching the function

Now we can run the lambda locally, connect to the database. However, deploying the lambda to the cloud
we encounter a new error:

Our lambda function doesn’t have enough rights to read the /global/serverless-bugtracker/db-password
SSM parameter. During the local launch, everything worked because the rights of our account were used.

Let’s add the appropriate permissions:

After these changes, the lambda can work both locally and when running in the cloud.

Mission accomplished.

Chapter 03: Making friends with the database: Integrating lambda functions

44

General Dependencies

The first lambda is ready, now we can implement the remaining three. It doesn’t seem like there should
be any problems, but... It quickly becomes clear that all our functions have similar code, namely the code
that receives SSM parameters. After all, each of them requires a password to create a connection to RDS.
The situation is clear and the solution is obvious - to separate the common method into a separate file and
change the functions so that they use the function from this file.

If you remember the structure that was chosen for the project and how the project assembly works, it will
become clear that you need to work with shared code in a different way. After all, only the code that is lo-
cated in the directory from the CodeUri gets into the artifact after assembly. Do we really need to copy the
common code to all artifacts?

Amazon recommends using layers for lambda functions when they share common dependencies. A lay-
er is an archive with code, data, settings. During the “sam” deploy command, the layer is packed into an
archive and uploaded to S3. When a function runtime is created, the AWS Lambda service downloads the
layers from S3 and unpacks them into the /opt folder. After that, you can work with the files in this folder.

Chapter 03: Making friends with the database General Dependencies

45

So a layer allows the same data/files to be used in multiple functions. In addition to being a way to share
code with layers, this tool allows you to speed up deployment by separating common dependencies into a
separate layer. As a rule, dependencies change less often than function code. Highlighting common depen-
dencies leads to a reduction in the size of the function artifact. Smaller - Less time spent loading data into
S3, which translates into faster deployment.

Of course, in our bug tracker REST API example application with 4 functions, the difference will not be criti-
cal, but if it is supposed to deploy a large number of functions and the sizes of artifacts can be in the tens of
megabytes, then the gain will be noticeable.

Layers support versioning. This means that I can set the function to use a specific version of the layer. In
this case, updating the layer will not require updating the function.

 We will create a layer that will contain an SSM utility class and two shared libraries (mysql2, aws-sam/cli-
ent-ssm).

We will create a separate directory src/layers/common-function-dependencies and will transfer all common
dependencies to the layer.

(src/layers/common-function-dependen-
cies/package.json)

Utilities (src/layers/common-function-de-
pendencies/ssm_utils.js)

Now we will add the assembly of our layer to
the SAM template.

The ContentUri property points to the di-
rectory where package.json is located. The
Retention Policy property determines the
behavior of SAM when the layer is updated.
The Delete value determines the strategy for
when old versions of layers are deleted on
upgrade.

Chapter 03: Making friends with the database General Dependencies

46

The layer is ready, now it can be connected to the function.

When an environment is created to run a function, all layers for nodejs are unpacked into the /opt/nodejs
folder. If several layers contain a file with the same name, then there will be a name conflict that you will
have to resolve on your own.

The /opt/nodejs/node_modules path is already in the NODE_PATH value. Therefore, importing libraries
will work from this directory automatically. But the utility file will have to be connected using the full path.

This code will work locally if run using the SAM CLI or the VSCode plugin. However, such imports will not
work in tests. We are using just for testing. To fix the missing dependencies issue, you’ll have to tweak jest
a bit.

package.json:

Chapter 03: Making friends with the database General Dependencies

47

Importing /opt/nodejs/ssm_utils in tests will import ssm_utils from the ./src/layers/common-function-de-
pendencies folder. Now you can safely write tests for functions. All mocks will work successfully.

./src/handlers/get-project-by-id/__tests__/app.test.js

Chapter 03: Making friends with the database General Dependencies

04
CHAPTER 04
BUILDING REST WITH APIGATEWAY

In this chapter, we will deal with issues related to building a real API and will also integrate with the github
API.

We will collect all of our lambda functions into one API. This API, like our entire application, will be deployed
using two sam commands.

The application will still run in debug mode and will be deployed from VSCode.

The API will work in the VPC where the database was previously deployed.

Code can be found here.

https://github.com/akoval/serverless-bugtracker/tree/chapter4

49

Our first function has been implemented, the database is deployed, our function is integrated with the da-
tabase and run locally in debug mode and the entire infrastructure for a given environment can be spun up
with the help of a few SAM commands. We have moved from initial stub code to integration with the data-
base and have gained sufficient knowledge to implement our remaining three lambda functions. The set-
tings of all of these functions are very similar, they all need the same SSM parameters, the same layer, the
same VPC settings. In order not to produce duplication in the template, CF provides a special Globals block
in which you can define some general settings for resources.

We’ll use this section in the template to define general function settings:
./template.yaml

Now we have all the functions that we need. Nevertheless, it doesn’t yet look like a complete application.
The application does not have an API and our lambda functions don’t handle http requests. So in this
chapter, we will deal with issues related to building a real API and will also integrate with the github API.

Chapter 04: Building REST with ApiGateway: Define remaining functions

50

Chapter 04: Building REST with ApiGateway: Creating an API in a SAM template

Creating an API in a SAM Template
Our goal is to create a REST API. To process http requests, we will use the ApiGateway service from AWS.
It allows you to create an API by integrating with lambda functions to process incoming requests. For each
incoming http request, ApiGateway creates a special event which can be further processed by the func-
tion.
Our functions already have the necessary logic that allows you to work with the database. But this code
works for an incoming event of a completely different format. We need to adapt our code to the event
format accepted by ApiGateway. Similar actions will have to be carried out with the response. An example
of an incoming event can be found in the events folder at the root of the project. SAM created it when we
created the app. In fact, SAM has already made a separate API for us. The template for the lambda func-
tion has the Events property
./template.yaml

This setting describes the
event sources that this func-
tion will process, the “Api” type
defines the ApiGateway ser-
vice as a source, the template
specifies the path, requests for
which will be processed by the
function.

As you can see from the example, we did not explicitly specify the ApiGateway resource anywhere. SAM will
create it itself. This kind of API creation is called implicit API creation. When building, SAM analyzes all func-
tions in the template, collects all functions that have a filled Events section with resources of the API type,
and collects all the paths for which these functions are responsible. It then creates a resource of type AWS::-
Serverless::Api named ServerlessRestApi. This API already has all the appropriate paths and the specified
lambdas are assigned to these paths. The implicit API seems handy for simple, uncomplicated applications.

If a more flexible setting is
needed, then an explicit re-
source definition would be a
more convenient option. The
minimally configured ApiGate-
way with the same name as
the stack looks like this:

51

Here you should stop and familiarize yourself with some of the configuration features of the API Gateway.
First of all, we’re interested in the StageName parameter, but in order to understand what it is and how to
use it correctly, let’s first pay attention to a slightly different issue, namely, the issue of organizing project
environments.

Multi Stage vs Multi Stack
Earlier, we touched a little on the issue related to CF and environments. We will now return to this issue and
try to expand it deeper.

Usually you need to have 3-4 standard fixed environments - Dev, QA, Stg, prod (often these environments
are spun up in separate accounts). Additionally, it is often very useful to be able to deploy a feature environ-
ment for team members. There are two approaches to creating such environments:
All environments in one SAM/CF stack.
Separate stacks for each environment.

First, we will consider one stack for all environments.
How do we work with lambdas in this sort of scenario?

This is easy if we just need a straight copy of our lambdas in our new environment, but what if we need dif-
ferent versions of different lambdas in different environments for development or testing purposes? In this
case, you can use additional features of the functions: versioning and aliases. When cloud-deployed lambda
functions are published a version number is assigned and an incremented $LATEST variable becomes avail-
able. In addition to versions, you will need aliases - the text name of the lambda function associated with a
specific version
.
Suppose we have an expanded lambda function MyFunc. You can create an alias DEV_MY_FUNC corre-
sponding to $LATEST, an alias QA_MY_FUNC for functions version 5, and an alias STG_MY_FUNC for func-
tions version 4. Now three different versions of the same lambda function can run in our cloud at the same
time, despite the fact that there is only one resource in my SAM template with lambda function.

In ApiGateway, there are stages for implementations of several environments. Stages essentially mean the
version of our API. There may be several such versions. For example, for my Dev/QA/Stg environments, my
API will have stages Dev, QA, Stg respectively. Each stage generates separate urls:
https://GATEWAY_HOST/dev/*
https://GATEWAY_HOST/qa/*
https://GATEWAY_HOST/stg/*

As an example, I have a function MyFunc. I want this function to process requests along the /hello path.

Chapter 04: Building REST with ApiGateway: Creating an API in a SAM template

52

Chapter 04: Building REST with ApiGateway: Creating an API in a SAM template

If you connect ApiGateway and a function, then it will process requests:
https://GATEWAY_HOST/dev/hello
https://GATEWAY_HOST/qa/hello
https://GATEWAY_HOST/stg/hello
With this setup, all of our environment APIs are bound to the same lambda function. If we want the dev
stage to work with fresh code, and QA with the old stable one we will use aliases to achieve this.
For each stage, it is possible to create variables. We will create a MY_FUNC_ALIAS variable. It will contain
the name of our function alias, which matches the environment.
For the dev stage, this will be DEV_MY_FUNC, for qa - QA_MY_FUNC, for stg - STG_MY_FUNC.
Finally, we need to tell ApiGateway not to use the $LATEST version of our function, but the version specified
by the MY_FUNC_ALIAS variable.
Now it remains to parameterize our lambda function version in the ApiGateway settings defined by the vari-
able MyFunc:${stageVariables.MY_FUNC_ALIAS}.
If it is configured through the UI, then it looks like this:

Then automatically each stage will use the version of the lambda function specific to it.
For this whole mechanism to work properly, it is necessary to publish new versions of functions and update
aliases after each implemented feature to the code that is in the main branch. These actions can be done
programmatically using the AWS cli.

But what if we want each team member to be able to easily deploy a feature environment in the cloud for
development? Each new environment is a new stage. All stages and their variables must be written some-
where in the SAM template (Ideally not by hand!) so that AWS creates ApiGateway with all configurations.
The number of stages, aliases and versions will grow significantly.

Here is such a non-trivial scheme obtained for the approach with one stack for all environments.

53

Features of this approach:

You will have to use more complex resource configuration using CF. Working with
stages can only be implemented using CF resources.
Complex CI / CD: actions are added to update versions and aliases after each fea-
ture made.
With all environments in “one file”, the probability of an error to break the “foreign”
environment increases. Untested code may end up in higher environments.
Creating a feature environment turns into a pain, because you constantly need to
modify the template (add new stages, remove old unused ones).

Chapter 04: Building REST with ApiGateway: Creating an API in a SAM template

An alternative to this approach is to create a separate stack for each environment using the same template.
In this case, the environments are completely isolated. No versions, aliases, stages are needed. The lambda
on the stack for dev is different from the lambda for QA. These are different resources, different objects in
the cloud with different ARNs. Changing one environment will not affect the other environment in any way.
This approach will always work. And with any resources. In Chapter 2, we looked at the option of pushing
global shared resources onto a separate stack. This approach goes well with the separation of environ-
ments at the stack level.

This option is easier to maintain and implement, so we’ll stick with it. This means that our ApiGateway
resource in the template should contain only one stage. Let’s go ahead and define this to be our production
environment.

Okay, we’ve got Stage figured out. What’s the story with OpenApiVersion? Turns out that there is something
that looks a fair bit like a bug in SAM, let’s call it a conundrum. The issue is that when creating ApiGateway,
in addition to the main stage (prod by default), sam also creates a mysterious stage called “Stage”. If you
specify the OpenApiVersion field in the resource, this will not happen. This only works with newly created
resources, this approach can not fix already corrupted resources.

54

Integration of lambda functions with the API
Now the resource created by ApiGateway can be connected to the lambda in the sam config. At the same
time, we will make more correct REST urls:

Chapter 04: Building REST with ApiGateway: integration of lambda functions with the API

We have added the projectId variable to the path, which will automatically be included in the event object -
http request. The RestApiId parameter contains the API resource ID. Similarly, we will correct other lamb-
da functions so that they work with our ApiGateway.
The ApiGateway is configured. All that remains is to correct the code of the lambda functions. In the code
of the handler of our lambda function the event parameter appears as the first argument. The format of
this parameter differs depending on the data source.

For example, if we make a regular GET /proj-
ects/1 request, then the event parameter will
have the following fields (the pertinent subset of
data is shown):

Example POST /projects/1 request:

55

Now it’s clear where to get the identifier and
query parameters from if I need them:

Chapter 04: Building REST with ApiGateway: integration of lambda functions with the API

What about the response? In a lambda, you can
return a response in absolutely any format, but
not everything is suitable for ApiGateway. The
service supports a response from lambda func-
tions in the following format:

The most important fields are statusCode and body. The first ApiGateway translates to http code. And the
body content becomes the response that the client will see. Thus, if you want to return a cleanly formatted
json in the response, then you need to pass in the body a string representing this json. isBase64Encoded is
used when base64 encoded binary data is to be returned.

The updated function with support for the “correct answer” is as follows:

The lambda function may return errors. If you make the handler in an asynchronous style (with async and
promise, like we have done), then any unhandled exception will result in an error. Errors in the response
from the lambda look like this:

56

Chapter 04: Building REST with ApiGateway: integration of lambda functions with the API

The errorMessage field contains the error text. The errorType field is the error type, it can be a string if I
pass a string as the first argument to the callback function. And the trace field contains the error stack
trace, if any.
As you can see, this format is not compatible with ApiGateway. Any such errors in the lambda are treated by
ApiGateway as internal errors. In general, if the lambda returns something incompatible in format, then we
will see a 502 error in the response. To prevent such unpleasant situations from happening, all errors in the
function must be caught and wrapped in the appropriate structure. This will allow you to set the necessary
headers.

57

Chapter 04: Building REST with ApiGateway: integration of lambda functions with the API

We can run the lambda function locally, which speeds up development and reduces the number of unforced
errors. Moreover, we can also run a lambda function locally, complete with an http server that will act as an
ApiGateway. As previously, we will describe 2 launch options: using the console command and the AWS
Toolkit plugin for VSCode.

Option one:
 The first way is to run the code locally using the sam cli. In this mode, the debugger is not connected and
a separate web server is launched, which will work until it is explicitly stopped. This server supports hot re-
loading, all changes in the code are immediately applied to the running application without restarting it. All
server state is saved. The run command looks like this:

We must not forget about the file with environment variables. This is the file I created to run the lambda
function locally in the previous part. The same logic works for running the API. Therefore, this file can be
used in both cases.
This mode is more for local development, debugging here is possible albeit painful. To do this, you need
a third-party debugger and will need to run the lambda in a special debugging mode ... In our opinion it is
more convenient to debug using the second method, which was actually created for this.

Option two:
 The second way is to run the application in debug mode via the VSCode plugin. The API debug setting dif-
fers from the similar lambda function setting: ./vscode/launch.json

As you can see from the code, when starting the API we explicitly specify the URL for the request and the
data that we want to send. We can still run the lambda function separately from everything in debug mode,
we just have to update the payload section because the event format is now different from what was sent
before.

58

For a lambda function it was possible to immediately determine the environment settings directly in the
configuration, but for the API these settings have to be passed through a file. In the json section (as in the
case of the lambda function), data is passed for POST / PUT requests. In the logs, you can see how the
lambda function starts, ApiGateway answers. Under the hood, the plugin calls the same command that I
described in the first option sam local start-api.

True, this command is launched from the bowels of VSCode, which is why you need to specify the full path
to the file with variables. In this mode, VSCode immediately connects its debugger. After processing the
request, the web server and the debugger are turned off. If you want to test the code with different parame-
ters, you will have to run the application in debug mode each time.

It’s time to deploy code to the cloud. In the AWS Console, you can find the URL where ApiGateway is avail-
able.

59

Chapter 04: Building REST with ApiGateway: Integration with GitHub

Integration with GitHub
To complete the necessary functionality, we just need to do the integration with GitHub in the get projects
function. You will need to generate a special token in order to use the github api. As in the case of pass-
words from RDS, this value must be put into the SSM. Working with github-token is similar to working with a
database password:

Now with each request for a project we return a list of its PR from the github. Similar to the first function we
will configure the remaining functions to work with our ApiGateway: add a URL and configure VPC subnets.
Pay attention to the fact that the names of the SSM parameters with a password and a github token are
hard-coded in the function code. These settings are global for all environments. But if you look in template.
yaml, then you can find a parameter there, which, by its meaning, can take on different values for different
environments. This is a parameter with the name of the database. Obviously, for dev and QA environments,
this name should be different.

First, I need an additional parameter - the name
of the environment:

We have two options for proceeding further.

60

Chapter 04: Building REST with ApiGateway: Integration with GitHub

The first is to make a template string into which the Env value can be substituted. This method is suitable
for simple cases where values can be easily calculated based on other parameters:

The second is to make a special enumeration of all possible values depending on the selected environment.
This option is suitable for cases where the values are not computable from the parameters. For example, we
want to have lambda functions with different amounts of RAM depending on the environment:

The Mappings block describes simple key-value structures. In our case, the key is the environment and the
value is an object whose memorySize field is of interest. It is acceptable to have multiple properties on this
object. The FindInMap function reads a value by key and property.

61

Chapter 04: Building REST with ApiGateway: Privacy settings

Privacy settings

Cool, we have ourselves a full-fledged REST API.

But the generated API is public. If we execute the request from the browser, then we can see the result of
the operation. Different applications may have different non-functional requirements that relate to the open-
ness of the application and access control (from the use of Bearer tokens and integration with AWS WAF to
the use of the Cognito service). But we do not plan to go into all these mechanisms. We are interested in a
basic way to restrict access to our ApiGateway at the network level, that is, the ability to work and access
ApiGateway only from our VPC.

When creating a new API, the ApiGateway service provides the ability to specify the Endpoint Type parame-
ter in the settings, which can be set to one of the following types:
edge-optimized - designed to provide global API access. To do this, CloudFront Points of Presence (CDN
from AWS) are used - that is, requests to this type of ApiGateway will be directed to the geographically clos-
est CloudFront point.

regional - assumes that access will be received from the region where the API was created.
private - an option that assumes access to the service only from the VPC.

Of these options we are interested in the Private type. To organize the Private access option in ApiGateway
VPC Endpoints and Resource Policies are used. VPC Endpoints are a network interface that allows you to
create a private entry point within a VPC to certain AWS services that do not support direct deployment
to a VPC. For clarity and ease of understanding what VPC Endpoints are you can familiarize yourself with
the diagram below - an example of organizing access to ApiGateway by default (red line) and through VPC
Endpoint (green line). By default, traffic to ApiGateway goes through the public Internet, but if we use a VPC
Endpoint, our traffic will not leave the AWS network:

62

To create a VPC Endpoint, we have added the necessary resource to the CF template of our VPC. This re-
source contains a number of interesting parameters, the most notable of which are:
PrivateDnsEnabled - this option transparently configures the DNS name for our private ApiGateway, that is,
it will allow us to use the specified ApiGateway endpoint URL through the created VPC Endpoint.
ServiceName - allows us to specify which AWS service we need a VPC Endpoint for - you can get a complete
list using the AWS CLI.
The following is an example VPC Endpoint resource code with dependent resources excluded:
./global-resources/vpc.yaml

In the above Resource Policies rules for accessing ApiGateway are set. Below is the ApiGateway resource
after the changes made to work in the Private version:

Chapter 04: Building REST with ApiGateway: Privacy settings

63

Chapter 04: Building REST with ApiGateway: Privacy settings

In the added settings, you can see the configuration of the private Endpoint, where the type of Endpoint and
the ID of the VPC Endpoint used are set, just below in the Auth section, the Resource Policy is configured,
which we used for ApiGateway in our project.
To configure the Resource Policy in the description of the SAM resource for ApiGateway, there are already
ready-made policy templates for different criteria for organizing access rules, in our case we took the Intrin-
sicVpceWhitelist template as a basis. This template defines an access policy that allows only a specific VPC
Endpoint to interact with ApiGateway. That is, to configure Resource Policies, you can use one of the ready-
made templates (in the form of allow / block lists for IP Range, AWS Account ID, VPC or VPC-endpoint), or
completely independently specify the necessary rules in a form similar to IAM- policy(CustomStatements).
In the case of self-configuring the Resource Policy, at first glance it may seem that these are the same IAM
policies, but there are a number of differences here. The main difference is the object on which the policy is
applied: in the case of IAM, it is either a user, group, or role; and in the case of Resource Policy, the object is
the service itself. As indicated above, we have used one of the ready-made presets to configure the Re-
source Policy (the allowed list of VPC-endpoint is IntrinsicVpceWhitelist).

Thus, we can summarize the organization of secure access to ApiGateway: We created an Interface VPC
Endpoint, configured a private Endpoint Type and set the necessary rules for access in the Resource Policy.
As a result, we have private access to our ApiGateway. At the same time, it is important to understand that
the Endpoint Type can be dynamically changed if necessary.

Another important point that you need to pay attention to: after any change in the Resource Policy config-
uration, you must definitely make a Deploy API, because changes to the Resource Policy are not automati-
cally applied. This can be done in the UI using the corresponding Deploy API menu item or using the com-
mand:

The rest-api-id parameter is the ID of the resource created by ApiGateway. You can get it both in the AWS
console of the service, and using the following CLI command:

This command will display information (name and search ID) on existing ApiGateways. An example com-
mand output can be seen below:

64

In addition, after setting up private access, a reasonable question may arise: how can we get access to
ApiGateway ourselves if we make it private and access to it is possible only from the VPC? In the third
chapter we already deployed a client VPN from AWS, which allowed us to access RDS and it turns out that
through it we can reach ApiGateway - no additional steps are required.

And the last organizational point worth focusing on: through one VPC Endpoint, you can access several
ApiGateways, in connection with this, the CF description of the VPC Endpoint resource was added to the CF
stack for global resources. This means that, for example, within the lower environments, each separate Ap-
plication stack (for example, dev/stg/qa) will use one global VPC Endpoint created in the stack with global
resources.

Chapter 04: Building REST with ApiGateway: Privacy settings

05
CHAPTER 05
WE PUT THE FINISHING TOUCHES
ON OUR SERVERLESS DEVELOPER’S
BAG OF TRICKS

In this final part, we will address remaining questions that may continue to pose difficulty.

A lot has already been studied to start collecting a must-have bag of tricks for serverless development. In
this part we will put the finishing touches on our toolkit.

Based on the previous parts, the first and one of the most significant tools in our bag of tricks will be the
SAM framework. This tool has allowed us to build all of the above and thanks to it our application is suc-
cessfully launched both in the cloud and locally.

Code can be found here.

https://github.com/akoval/serverless-bugtracker/tree/chapter5

66

Chapter 05: Serverless bag of tricks

Implementation of CI/CD

The sam build and sam deploy commands are used to deploy the application. Each application should be
able to automatically deploy a new one (on commit or on demand).

We want to implement a complete CI/CD pipeline for our Jenkins CI application. Not so long ago, AWS add-
ed a number of commands to the SAM framework to facilitate the task of organizing a full-fledged CI / CD
approach - we are talking about the following commands:

These commands make it easy to create CI/CD pipeline files for a number of popular CI/CD tools.
The sam pipeline bootstrap command is used to prepare the resources necessary for CI / CD work in
AWS. This is a preparatory command that will interactively request a series of data (number of stages,
AWS accounts, etc.) and based on them, create the necessary resources in AWS. As a result of this com-
mand, a Cloud Formation stack will be deployed in the AWS account, which will create the resources nec-
essary for a full-fledged pipeline: IAM roles / policies, S3 bucket.

In turn, the sam pipeline init command is used to directly create a configuration pipeline file in the format
of the CI / CD service you are using. This command is based on the resources already created for deploy-
ment and depending on the CI / CD selected from the supported list - service - will generate the corre-
sponding pipeline file.

The following services are currently supported:

Jenkins
GitLab CI/CD
GitHub Actions
Bitbucket Pipelines
AWS CodePipeline

67

The result of this command will be a configuration pipeline file for the selected CI/CD tool. Below is a code
snippet for Jenkins CI:

Chapter 05: Serverless bag of tricks

In this case, you can see that the created pipeline file uses the usual shell commands available when install-
ing the SAM cli utilities. Nothing prevents you from creating a pipeline configuration file yourself using the
sam build and sam deploy commands. In order for the above option to work correctly, you need a Jenkins
plugin Pipeline: AWS Steps.

The command is launched in a docker instance, which contains all the components necessary for building
and deploying the application. The code in the withAWS block is executed in the context of the specified
AWS profile, with the appropriate permissions. The variable MAIN_BRANCH, as you might guess, defines
the main branch of the repository, and in this case, the deploy-prod stage will only run if the main branch is
used.

Thus, the sam pipeline command allows you to quickly deploy the first version of the CI / CD pipeline for a
serverless application. This tool will come in handy for a quick start or for prototyping and will fit perfectly in
our aforementioned toolkit.

68

Chapter 05: Serverless bag of tricks

CPU and disk size settings

We already have 4 lambda functions. When working
with lambda functions, we do not work directly with
the infrastructure. If these were EC2 instances, then
we could choose the size of the disk, the type of
instance (which would directly affect the performance
of virtual cores and the amount of available RAM). But
what do lambda functions have? What if our lambda
needs to use threads efficiently, how can we make
use of more advanced virtual cores?

In AWS, there is only one setting that can affect the
performance of the lambda function environment -
MemorySize (In the last part, we added a setting to
allocate different amounts of memory for different
environments). On the one hand, everything is great-
ly simplified, on the other hand, there is a direct and
non-obvious dependence of the CPU on the amount
of RAM.

At the time of this writing, the maximum amount
of memory for a function is 10GB, the minimum is
128MB. For every 1769MB, AWS “adds” 1 vCPU to the
environment. So we can have 1 to 6 virtual cores. The
performance of the core also depends on the amount
of memory, so, 1 environment core with 128 MB of
memory is 2 times “weaker” than 1 environment core
with 256 MB of memory.

As memory increases our lambda gets faster, but so
does the cost of running it. Using the AWS Lambda
Power Tuning tool we can find the sweet spot be-
tween performance and cost for our particular func-
tion. This utility runs a lambda function in different
configurations, measures the time and cost of work
and shows it on a graph.

If the application processes a lot of requests, then
this tool will allow you to determine the optimal con-
figuration of the lambda function, which would give
acceptable performance at the lowest cost. This tool
is definitely worth adding to your toolkit.

In addition to RAM, you can adjust the size of the /
tmp directory that is available to the function. Config-
uration is done using the EphemeralStorage property.
The minimum size (and default) is 512 MB, the maxi-
mum size is 10 GB.

69

Chapter 05: Serverless bag of tricks

Log setup

Let’s say an error occurs. How are we going to find out about it? Where can you find the reasons? In a clas-
sic app, we have logs. The logs are displayed in some service (for example, in Kibana), where you can filter
the results, search by keywords.
It’s time to deal with the logs in our serverless application. We have lambda functions that contain the busi-
ness logic of the application, there is an ApiGateway that accepts requests. We need ways to work with the
logs of these components.

Lambda function logs
Let’s start with functions. AWS has a service Cloudwatch Logs, which is used to store and analyze applica-
tion logs. For each lambda function, SAM creates a separate log group in this service. Each log group con-
sists of several log streams. Each such thread refers to one instance of the lambda function. All data from
stdout and stderr goes there. If we go to the AWS Console in the Cloudwatch service, then our logs there
look like this:

The first thing to notice is that the logs contain entries starting with START, END, REPORT. These auxiliary
records generated by AWS give an idea of when the lambda started executing the request, when it finished
and the resulting metrics - execution time, billed time, memory used, allocated memory, etc. The second
thing you should pay attention to is that each request has its own unique RequestId. Thanks to this we can
find all the logs for a particular request and see the entire execution chain.

Viewing streams in a log group is inconvenient. Several dozen function instances can be created and killed
in a day, and in this case it is very laborious to look for errors. Another tool in the same service comes to
the rescue - Logs Insights. It is a tool that allows you to search for logs across all streams of different log
groups with filtering and sorting. The query language, of course, will require some getting used to and you
will have to look into the documentation more than once, but auto-completion makes the situation a little
easier. We’ll try to filter all logs with INFO level. It turns out that there is no field in the entry log by which we
can filter such logs. The logs are not structured and are just a text string. The INFO string is in the @mes-
sage field:

70

Logs Insights is much more convenient to use than the ability to view “raw” log records. Yes, in terms of
functionality it loses to Kibana and ElasticSearch. But the minimum set of functionality is enough to explore
problems and find solutions. For those cases where a more advanced query language is required, you can
instantiate ELK in the cloud and send logs from functions there.

Logs Insights or its equivalent should be in the arsenal of any serverless developer. If you only need logs for
a specific function, then sam can also help. The sam logs command allows you to get the logs of a specific
lambda function. It is possible to filter records by date and text:

Chapter 05: Serverless bag of tricks

You can also set up continuous retrieval of logs:

Unstructured logs are inconvenient to work with. Filtering is particularly problematic. For example, I’d like
to be able to search for all logs related to a particular projectId. In the current implementation, this will be
difficult to do.

With Cloudwatch, structured logging can be implemented at the code level. If you pass an object to console.
log() , then AWS will automatically split this object into parts and allow you to search through the fields of
this object. If you do not want to make such band-aids yourself (wrap each line in an object with a field),
then you can use special libraries for logs.

For example, there is winston-cloudwatch, but it uses the Cloudwatch API to publish logs from any external
resources. You will have to explicitly set the group log name, configure the AWS account settings. This does
not appear ideal in our case.

Ideally, you just need a wrapper around console.log (info,warn, error), which will help wrap text and tags into
objects. The lambda-log library handles this role perfectly, for example, no account settings, just a conve-
nient wrapper for outputting logs to the console, the output logs are structured. Also, this library allows you
to work with the context of log entries:

71

Chapter 05: Serverless bag of tricks

The following object will be in the logs:

Our project ID is now in the tags section, now we can search for this field in Cloudwatch. In the future, if a lot
of data is stored in tags, then each value can be equipped with a prefix.

72

Logs in ApiGateway

Sometimes there are situations when requests do not reach functions. In such a situation, the logs config-
ured in ApiGateway will help.

There are 2 types of logs in ApiGateway
execution logs
access logs

Execution Logs
In the first type of logs, you can find information about the request / response, about which authentication
methods are used. These logs turn out to be very voluminous, for one request we can get 10 response lines.
But it can be useful for deep investigation of some problems, because it gives information about how the
request is processed in the service itself.

You can enable execution logs as follows:

Chapter 05: Serverless bag of tricks

AWS for each ApiGateway automatically creates a separate log group for execution logs. An example of
logs for one request:

Just one line contains information about the request, response status, and other additional parameters.

We will set up access logs the format of which AWS allows you to customize.

73

Chapter 05: Serverless bag of tricks

Access Logs
In addition to the format (Common Log Format, CSV, XML, JSON), you can customize the list of fields to dis-
play. The context of the event log contains a large amount of data, there are several dozen different fields
that can be displayed in the logs. We’ll stick with the standard ones:

Now we can update the rest of the lambda functions: add logs, integrate with the new event format.

74

Tracing

A finished serverless application usually consists of many features. These functions call other services, oth-
er functions. The resulting chain of calls from receiving a request to returning a result can be quite complex.
In such a distributed environment, in addition to logs, tools are needed to help evaluate application perfor-
mance and detect paths that lead to errors. Of course, all this information can be obtained from the logs,
but the convenience of using this data leaves much to be desired, because you will have to build a chain of
calls yourself each time in your head. A service for tracing such as AWS X-Ray comes to the rescue.

AWS X-Ray allows you to build service maps, track the execution logic for incoming requests, and show
errors and failures in the application. This service marks some requests with a special TraceId. If other ser-
vices are called during the processing of a request, then the generated requests are also marked with this
identifier. Thus, it allows you to build a chain of calls, track the execution of a specific request, and profile
the application.

In order to start using this service, you need to enable x-ray tracing in ApiGateway and lambda functions:

Chapter 05: Serverless bag of tricks

Now we will make a couple of calls to our API and go to the AWS Console in the XRay section. AWS produc-
es this output trace:

In addition to the map, XRay provides information about the duration of steps. My map is very simple, you
can only see the initialization and operation time of the lambda function:

75

Chapter 05: Serverless bag of tricks

Unfortunately, we don’t see the database or github but they are necessary for more detailed profiling. Let’s
correct this problem. To add these services, you will need to use aws-xray-sdk in your function code. To pro-
file the work with the database:

After these changes, XRay will automatically receive information about queries in MySQL. If desired, you can
add the SQL query itself to the context.

The Github API is not a standard service for the sdk, so these requests will not show up in the map or trace
chains. To improve tracing for the GitHub API, we’ll take advantage of the fact that XRay can track http/https
requests.

Now requests to the GitHub API will appear on the map.

Another useful feature in the XRay sdk is creating custom segments. They are not displayed on the service
map, but the duration is considered for them and with this you can do profiling of important parts of the
code. We’ll make a segment that includes a GitHub API request and processes it:

SSM can be integrated with sdk, but it is not necessary. This is because the request in SSM occurs once
during the lifetime of the instance at the time of initialization. Tracing works only when the event handling
phase occurs.

76

Chapter 05: Serverless bag of tricks

After all the changes, the call map looks like this:

And here is the updated list of segments:

As you can see, the tool is useful and necessary in distributed systems. But there is a fly in the ointment.
Now my code doesn’t work locally. A real lambda function is run locally and the XRay context is not created
as it should. Because of this, an error occurs and the lambda function does not start: ‘Missing AWS Lambda
trace data for X-Ray. Ensure Active Tracing is enabled and no subsegments are created outside the func-
tion handler’.

 To run locally, you can hide these errors. Amazon provides a special variable, AWS_SAM_LOCAL, to define
how to run locally. To ignore these errors, we will use a special mode in the Xray client:

The deployed application will work with tracing, while tracing will be ignored in local mode.

Tracing services play an important role in monitoring and debugging distributed systems, and this role
increases with the increase in the number of application components. Such a tool must be in a
serverless developer’s toolkit.

77

Chapter 05: Serverless bag of tricks

Limiting Lambda function concurrency

As mentioned earlier, for each event from ApiGateway, AWS will look for a function instance ready for
processing. If there is no ready instance, then AWS will start creating it. Thus, if there are no ready-made
instances and 10 events arrive at once, then 10 instances of lambda functions will be created. This is very
convenient, the provider will be able to handle peak loads and scale automatically. But what will this do to
our database?

It is obvious that such uncontrolled “reproduction” will eventually lead to a database failure or very large de-
lays. A similar problem can be seen with any constrained resource, access to which is limited by some kind
of quotas. What can be done here?

For each function, you can set the maximum number of instances that can run at the same time. We can set
this parameter via global settings for all functions:

By introducing this limit, we can block the creation of new instances beyond this limit. Events that lack a
handler will remain unhandled. In the case of API Gateway, the user will receive an error. This mechanism al-
lows you to control the rate of event processing for applications. Whether it is correct to handle such loads
in this way is another question, and it is solved differently in each individual case.

If we set ReservedConcurrentExecutions to 0, then our lambda will stop processing events altogether, be-
cause the provider will not be able to create new instances. This can be useful in situations where you need
to disable some functionality without updating the entire application. For example, a bug in a function or a
database problem, we can disable the lambda that can cause these problems.

Provisioning lambda function concurrency

In the first part we touched on the problem of cold start a bit. To reduce the cold start time, we chose node-
js, since interpreted programming languages have less initialization time. But nevertheless, even with the
use of a certain language, this problem may not disappear. The more logic in the initialization block, the
longer the waiting time for the first response. What to do? What else can be done to reduce this time, or to
minimize the impact of this cold start problem?

In the initialization phase, the code is downloaded and the environment is prepared. After the environment
is ready, the actual initialization of the code takes place.

As developers we can influence how our code is initialized. Obviously, the use of “heavy” libraries and
frameworks will increase this time. Therefore, if the application can do without any frameworks,

78

Chapter 05: Serverless bag of tricks

then it is better not to add them. For example, you can do just fine without Express.js when writing lambda
functions. There is no need to add the entire aws-sdk to the dependencies if only the SSM client is needed
from this library.

Similarly, as developers we also have control over the size of our codebase. Here the recommendation is
very similar to the previous ones. Frameworks and libraries, in addition to loading time, also affect the size
of the artifact. AWS-SDK is 70MB while aws-ssm client is only about 5MB (according to npm).
Another way to reduce the codebase is to use source compression tools like webpack. This option is the
simplest and most efficient if no layers with dependencies are applied, and all libraries are inside the lamb-
da function.

Arranging compression across layers will require more effort. Dependencies from layers can be used in
many functions. You will have to fix the library methods used through the proxy modules. Unfortunately, this
solution is very inconvenient and cumbersome.

All these methods will help reduce the cold start time. But it is difficult to completely overcome this phe-
nomenon. Yes, we can optimize our dependencies, but they will still contribute something to the overall
initialization time.

How can we resolve this issue?

AWS has the ability to keep a certain number of “live” function instances in the cloud. Thus, when a new
event appears for processing, the function is immediately ready for work, it does not need time to initialize.
This functionality in AWS for lambda functions is called Provisioned Concurrency. We pay money to have
the cloud provider keep a number of features “warmed up”.

For these “warmed up” functions, the cold start problem becomes irrelevant. If the number of events ex-
ceeds the number of existing warmed features, normal AWS rules are enabled. New instances are created
according to the usual rules (with cold start)
Setting the ProvisionedConcurrency for the lambda function is done in the SAM template:

In a sense, you can consider the possibility of maintaining already “warmed up” function instances as a
silver bullet to combat cold start. This solution is especially advantageous in the case of small loads. For
applications with a variable load however, this solution may come with additional costs.

CONCLUSION

The application is ready and it’s time to take stock of the whole adventure. Developing a serverless applica-
tion was fun and interesting. We touched on the basic set: api gateway, lambda functions, RDS, sam. During
the development process, we tried to cover the same points that we often encounter when developing
classic server applications: testing, debugging, deployment, and so on.

Our bag of tricks now consists of the following:
SAM framework for building and managing the application.
AWS XRay as a tracing solution.
Logs Insights, sam logs for working with logs.

lambda-log for creating structured logs.

80

Conclusion

In the preface, we wrote about the pros that are usually attributed to serverless development. In the pro-
cess of working on the application, we can definitely confirm two of the four:
speed of development.
fast releases.

Often, at the start of projects, the first weeks are intensive work on creating environments, writing de-
ployment scripts, and working out CI / CD. Quite a lot of work at this time falls on DevOps engineers. With
serverless applications, this first step can be completed faster.

Of course, DevOps help will most likely be required to set up VPCs, VPNs, and integrate them with AWS ser-
vices. As for the application itself, the developer is quite able to create deployment scripts, configure SSM,
set build parameters, and organize dev/qa/stg/feature environments. SAM has proven to be a very handy
deployment tool.

The releases themselves happen quickly, there is no need to update the entire application, instead you up-
date only the functions that have changed.

“Flexible scaling” and “reducing the time or cost of administering applications” were not fully experienced.
Our project did not have a real trial operation, despite this, we managed to test the operation of the applica-
tion with variable load.

Performance tuning is greatly simplified, there are 3 parameters that can be controlled to increase / de-
crease the performance of the application: the amount of memory in the function itself, and the Reserved-
Concurrency and ProvisionedConcurrency values.
But not everything can be perfect and sunny. There are moments that require a lot of attention.

If there were practically no problems with serverless components, then there were difficulties at the junc-
tion of SAM and CF. In CF, the number of resources and components is much larger and these resources
are more difficult to configure. Therefore, it felt like more time was spent on CF resources and settings.
Sometimes there was a lack of hints in the AWS documentation on how to do certain things.

81

Frankly, in the process of working on the application, we reworked the project structure several times.
This is because there were no clear guidelines or recommendations from AWS on how best to arrange
files in a project. Initially, all our js files were in one folder and everything seemed simple and clear until
we looked into the assembly folder. We even took the time to learn how to use webpack to compress our
sources. But then the understanding came that such a project structure is not quite suitable for a server-
less application.

And so, this adventure has come to an end. We hope that it will be possible to make some kind of continua-
tion.

There are many more interesting things in “serverless land”:
working with long running processes (Lambda functions are limited to 15 minutes).
building chains from lambda functions using step functions.
using other frameworks for deployment (serverless, aws cdk).
other cloud providers.

Conclusion

THANKS FOR READING!

For more info about the work we do, and the training we provide our teams, check out:

Big IdeasOur Work

https://www.lineate.com/big-ideas
https://www.lineate.com/our-work

