
Ultra-High Performance
NoSQL Benchmarking
Analyzing Durability and Performance
Tradeoffs

Denis Nelubin, Director of Technology, Lineate
Ben Engber, CEO, Lineate

TABLE OF
CONTENTS
01
02
03
05
07
08
10
19
23
25
26
47
49

Overview

Test Description

Why Another Benchmark?

Database Selection

Methodology

Client & Workload Description

Results

Conclusions

Appendix A: Hardwave

Appendix B: Installed So tware

Appendix C: Database Configuration

Appendix D: Test List

Appendix E: YCSB Customizations

Overview
As companies deal with ever larger amounts of data and increasingly demanding
workloads, a new class of databases has taken hold. Dubbed “NoSQL”, these
databases trade some of the features used by traditional relational databases in
exchange for increased performance and/or partition tolerance. But as NoSQL
solutions have proliferated and differentiated themselves (into key-value stores,
document databases, graph databases, and “NewSQL”), trying to evaluate the
database landscape for a particular class of problem becomes more and more
difficult. In this paper we attempt to answer this question for one specific, but
critical, class of functionality - applications that need the highest possible raw
performance for a reliable storage engine.

There have been a few attempts to provide standardized tools to measure perfor-
mance or other characteristics, but these have been hobbled by the lack of a clear
mandate on exactly what they’re testing, plus an inability to measure load at the
highest volumes. In addition, there is an implicit tradeoff between the consistency
and durability requirements of an application and the maximum throughput that
can be processed. What is needed is not an attempt to quantify every NoSQL
solution into on e artificial bucket, but a more systemic analysis of how some of
these databases can achieve under assumptions that mirror real-world applica-
tion needs.

We attempted to provide a comprehensive answer to one specific set of use cases
for NoSQL databases - consumer-facing applications which require extremely high
throughput and low latency, and whose information can be represented using a
key-value schema. In particular, we look at to common scenarios. We consider
applications that have strong durability needs, where every transaction must be
committed to disk and replicated in case of node failure, and we also consider
applications that are willing to relax these requirements in order to achieve the

01 of 52© Copyright 2013, Lineate

02 of 52

highest possible speed.

Key-value storage is of course a subset of what NoSQL databases can do. Never-
theless, it is a real-world need currently demanded by most companies in the Ad
Tech industry as well as an increasing number of other applications ranging from
e-commerce “flash sale” applications to social platforms to financial engines.
We plan to follow up this paper with additional studies into other major NoSQL
use cases, including document-oriented applications, graph-based applications,
and big data analytics. Attempting to evaluate them all together conflates too
many different needs with too many different kinds of required optimizations,
and prevents meaningful comparison.

Test
Description
In this test, we analyzed performance characteristics of four key-value datastores:
Cassandra, Couchbase (versions 1.8 and the just-released 2.0), Aerospike, and
MongoDB¹. We performed the test using a modified version of the Yahoo Cloud
Serving Benchmark (YCSB) from Yahoo!
Research, which has become something of a standard for trying to measure
NoSQL performance.

Our goal was to measure their suitability for classes of applications that have
extremely high transactional loads and who can architect their applications

1. MongoDB is actually a document database. While it can be used as a key-value
store, it is not specifically optimized for this scenario. However, we see significant
interest from our customers in using it as a key value store, so we include it here.

© Copyright 2013, Lineate

around a basic set of operations in order to achieve this scale. This is a real-world
problem in industries ranging from real-time bidding markets to gaming. In partic-
ular, we tested how such applications behave under hardware that would be used
in the real world, i.e. non-virtualized systems with data either in RAM or stored to
solid state drives, and investigated tradeoffs between raw speed and durability.

We opted for a narrow set of tests that could run against all systems, in order to
provide a baseline of functionality. Our concern was to address those applications
that need the absolute highest performance. Features such as secondary indexes
(in Couchbase 2.0, Cassandra, and MongoDB), while valuable and worthy of study,
do not directly impact the question at hand.

Similarly, at every phase of the project we elected to limit the number of variables
in play. YCSB offers a range of data distributions, operations, workloads, all of
which have implications downstream at the database server level. Rather than
providing a bunch of numbers around a bunch of theoretical models, we attempt-
ed to narrow down on a very specific set of assumptions and optimize the sys-
tems around them. We felt such an experiment provided more actionable data
than a broad but untuned set of graphs and numbers.

In this test, we analyzed performance characteristics of four key-value datastores:
Cassandra, Couchbase (versions 1.8 and the just-released 2.0), Aerospike, and
MongoDB¹. We performed the test using a modified version of the Yahoo Cloud
Serving Benchmark (YCSB) from Yahoo!
Research, which has become something of a standard for trying to measure
NoSQL performance.

Our goal was to measure their suitability for classes of applications that have
extremely high transactional loads and who can architect their applications

03 of 52

around a basic set of operations in order to achieve this scale. This is a real-world
problem in industries ranging from real-time bidding markets to gaming. In partic-
ular, we tested how such applications behave under hardware that would be used
in the real world, i.e. non-virtualized systems with data either in RAM or stored to
solid state drives, and investigated tradeoffs between raw speed and durability.

We opted for a narrow set of tests that could run against all systems, in order to
provide a baseline of functionality. Our concern was to address those applications
that need the absolute highest performance. Features such as secondary indexes
(in Couchbase 2.0, Cassandra, and MongoDB), while valuable and worthy of study,
do not directly impact the question at hand.

Similarly, at every phase of the project we elected to limit the number of variables
in play. YCSB offers a range of data distributions, operations, workloads, all of
which have implications downstream at the database server level. Rather than
providing a bunch of numbers around a bunch of theoretical models, we attempt-
ed to narrow down on a very specific set of assumptions and optimize the sys-
tems around them. We felt such an experiment provided more actionable data
than a broad but untuned set of graphs and numbers.

There have been a few NoSQL benchmarking studies published along similar lines.
YCSB was the foundation for most of these, and Yahoo! Research’s 2010 paper
Benchmarking Cloud Serving Systems with YCSB is excellent reading for anyone
interested in the topic. A more recent study by Altoros entitled A vendor-indepen-
dent comparison of NoSQL databases: Cassandra, HBase, MongoDB, Riak was

Why another
benchmark?

© Copyright 2013, Lineate

04 of 52

recently published in Network World. However, we felt that both of these stud-
ies, as well as others we encountered, had two major issues preventing them
from addressing the questions we were trying to answer. The first was that they
did not focus on specific use cases, and tried to provide a broad metric across a
wide variety of problem classes. The second was that they were run on hardware
with rotational drives, which seemed like a poor assumption for those companies
looking to handle transactional data at the scale being discussed. The software
configurations in these studies were also not necessarily optimized for the use
cases considered here, and no concentrated effort was made in order to normal-
ize the durability and replication settings across systems. In contrast, we preferred
to test a narrower set of databases but in a highly optimized way. Our goal with
this study was purely to determine how these key-value stores perform under
extremely high loads. That meant not only using raw hardware and solid state
drives, but configuring each database in question to optimally handle the work-
load. We did both to the best of our ability, and by soliciting input from each of
the vendors.

One last major point: The YCSB tool, which is rapidly becoming the standard for
benchmarking NoSQL databases, was unsuited for testing at the highest volumes.
It provided limited support for scaling across multiple clients, and the code had
design limitations which prevented meaningful tests from being run at the rate
needed to fully load these servers. As part of this project, we altered and extend-
ed the YCSB tool and supporting scripts to overcome these limitations. We con-
tributed this back to the community, so that others can reproduce our results
more easily. Details of our changes can be found in Appendix E.

© Copyright 2013, Lineate

05 of 52

Database
Selection

For the test we selected 3 common open source NoSQL databases that are in
widespread use: Cassandra, Couchbase, and MongoDB. We also included the
commercial Aerospike database, which is proprietary and has had less exposure
than the other databases, but seemed like an excellent candidate for the test
because it specifically targets high-volume processing and is optimized for SSDs.

A brief description of the databases:
 1. Cassandra is a column family store operating under the auspices of the
Apache Software Foundation. Initially developed at Facebook, its goals are avail-
ability and the ability to scale to a very large size. With flexible consistency
models, its architecture is particularly conducive to write operations.
 2. Couchbase is the company formed by the merger of two databases, CouchDB
and Membase. We tested both the 1.8 version, which is purely a distributed
key-value store built around the hugely popular memcached cache, and the 2.0
version, which was released during our benchmarking and adds secondary index
support as well as performance improvements.
 3. MongoDB is different from the other products in that it is primarily a docu-
ment database. It has extensive support for a variety of different kinds of second-
ary indices, strong features around documenting and a very different approach to
scaling and durability. We included it in this study because in our experience
clients often consider it for similar kinds of applications.
 4. Aerospike is another key-value store with its origins in the ad tech space. A
commercial product, it positions itself as the market leader in raw performance
and was a natural candidate to see if those claims were justified.

A critical thing to note is that these databases are optimized for different things.
For example, Couchbase and MongoDB are intended to run on hardware where

© Copyright 2013, Lineate

most of the working set is cached in RAM. Aerospike, in contrast, is optimized for
direct writes to SSD. For durable writes, we would expect Aerospike to dominate
the performance results. These databases all make different assumptions and
take different approaches to consistency / availability tradeoffs. For example,
Aerospike is intended for use with synchronous replication and write directly to
disk, providing strong durability and consistency. Couchbase by default takes a
different approach, maximizing throughput by putting data in RAM and persisting
data to disk and updating replicas asynchronously (but still providing consistency
by querying the data master). Cassandra’s consistency is tunable on a que-
ry-by-query basis. Our goal was to establish apples-to-apples comparisons as
often as possible, but given the different database architectures, a fair amount of
judgment went into each test. As a general rule, when in doubt, we relaxed con-
sistency or durability to provide the highest numbers within the rough confines of
each test. It is impossible to list all the various configuration tradeoffs that can be
made within this document, but we do list the configurations used in Appendix C.
In the interest of full disclosure, we should point out that Lineate has strategic
and/or commercial relationships with Aerospike and 10gen (the makers of Mon-
goDB) as well as other NoSQL vendors not included in this test. Whenever practi-
cal, we reached out to the vendors directly to confirm our choices of settings and
resolve the bugs or problems we encountered. Both Aerospike and Couchbase
provided YCSB plugins for their respective databases. We shared the performance
results with Aerospike, Couchbase, and 10gen and incorporated their suggestions
wherever possible. Aerospike sponsored the changes to YCSB, and rented the
hardware to us. However, the system setup and systems administration, tools and
software used, database configuration and setup, test methodology and design,
and analysis were all done in a clean room fashion by our own engineers.

For the test we selected 3 common open source NoSQL databases that are in
widespread use: Cassandra, Couchbase, and MongoDB. We also included the
commercial Aerospike database, which is proprietary and has had less exposure
than the other databases, but seemed like an excellent candidate for the test
because it specifically targets high-volume processing and is optimized for SSDs.

A brief description of the databases:
 1. Cassandra is a column family store operating under the auspices of the
Apache Software Foundation. Initially developed at Facebook, its goals are avail-
ability and the ability to scale to a very large size. With flexible consistency
models, its architecture is particularly conducive to write operations.
 2. Couchbase is the company formed by the merger of two databases, CouchDB
and Membase. We tested both the 1.8 version, which is purely a distributed
key-value store built around the hugely popular memcached cache, and the 2.0
version, which was released during our benchmarking and adds secondary index
support as well as performance improvements.
 3. MongoDB is different from the other products in that it is primarily a docu-
ment database. It has extensive support for a variety of different kinds of second-
ary indices, strong features around documenting and a very different approach to
scaling and durability. We included it in this study because in our experience
clients often consider it for similar kinds of applications.
 4. Aerospike is another key-value store with its origins in the ad tech space. A
commercial product, it positions itself as the market leader in raw performance
and was a natural candidate to see if those claims were justified.

A critical thing to note is that these databases are optimized for different things.
For example, Couchbase and MongoDB are intended to run on hardware where

06 of 52

most of the working set is cached in RAM. Aerospike, in contrast, is optimized for
direct writes to SSD. For durable writes, we would expect Aerospike to dominate
the performance results. These databases all make different assumptions and
take different approaches to consistency / availability tradeoffs. For example,
Aerospike is intended for use with synchronous replication and write directly to
disk, providing strong durability and consistency. Couchbase by default takes a
different approach, maximizing throughput by putting data in RAM and persisting
data to disk and updating replicas asynchronously (but still providing consistency
by querying the data master). Cassandra’s consistency is tunable on a que-
ry-by-query basis. Our goal was to establish apples-to-apples comparisons as
often as possible, but given the different database architectures, a fair amount of
judgment went into each test. As a general rule, when in doubt, we relaxed con-
sistency or durability to provide the highest numbers within the rough confines of
each test. It is impossible to list all the various configuration tradeoffs that can be
made within this document, but we do list the configurations used in Appendix C.
In the interest of full disclosure, we should point out that Lineate has strategic
and/or commercial relationships with Aerospike and 10gen (the makers of Mon-
goDB) as well as other NoSQL vendors not included in this test. Whenever practi-
cal, we reached out to the vendors directly to confirm our choices of settings and
resolve the bugs or problems we encountered. Both Aerospike and Couchbase
provided YCSB plugins for their respective databases. We shared the performance
results with Aerospike, Couchbase, and 10gen and incorporated their suggestions
wherever possible. Aerospike sponsored the changes to YCSB, and rented the
hardware to us. However, the system setup and systems administration, tools and
software used, database configuration and setup, test methodology and design,
and analysis were all done in a clean room fashion by our own engineers.

© Copyright 2013, Lineate

07 of 52

Methodology

As with the studies mentioned above, we used the YCSB client as the basis for all
our tests. In order to preserve a common baseline as much as possible, we used
the same kinds of data sets and record sizes as the other studies, but focused on a
subset of workloads.

The overall approach was as follows:
1. Provision the hardware, operating systems, and environment using our best

estimates of what customers will run in their data centers and the best practices,
where specified, of the various databases.

2. Install a database on the 4-node cluster. Configure it optimally and ensure it
is functioning as a single cluster.

3. Load a large dataset to disk (SSD) by inserting records individually but as fast
as possible.

4. Perform an overall throughput test to determine the maximum load the clus-
ter can handle, using the strongest durability guarantees practical.

5. Perform a stepwise load to determine how latency behaves as load increas-
es.

6. Repeat the test for both read-heavy and balanced read-write workloads.
7. Repeat steps 3-6 for a dataset that fits into RAM. This will provide higher

throughput at the expense of durability.

All the databases provide built-in sharding and replication, though not all support
all replication modes. We set each database to store 2 copies of the data. When a
node goes down, all data should be preserved in at least one place, and when it
rejoins the cluster, it will take some time to get up to date copies of the replicated
data. YCSB also includes functionality to support range scans to access groups of
keys. We did not include such tests in our analysis because the feature is not uni-
versally supported across databases and is of questionable value in our opinion.

© Copyright 2013, Lineate

08 of 52

Client & Workload
Description

Data Sets
The data was loaded to the database using the “load” phase of the YCSB tool. We
used a replication factor of 2 for each database, so each record was stored two
times.
 Record description: Each record consisted of 10 string fields, each 10 bytes long
and with a 2-byte name
 Record size: 120 bytes
 Key descrip ion: The key was the word “user” followed by a 64-bit
Fowler-Noll-Vo hash (in decimal notation)
 Key size: 23 bytes

The records were intentionally small to prevent network bandwidth from becom-
ing a factor in the tests.

Disk-backed Data Set
This data set was purposefully sized higher than the available RAM in the cluster
(after considering replication). The idea was to force a significant chunk of opera-
tions to go to disk while using small enough records to ensure network bandwidth
did not become a bottleneck.
 Number of records: 500 million
 Total amount of raw data: approximately 60GB

For Couchbase, we used 200 million records instead. The reason for this was that
Couchbase required 120 bytes of metadata per row to fit into RAM or it will not
operate. The 200 million number was selected because it meant that RAM com-
fortably held the metadata but not the underlying dataset.

© Copyright 2013, Lineate

http://en.wikipedia.org/wiki/Fowler_Noll_Vo_hash

09 of 52

Workloads

Workload A - Balanced

Workload B - Read Heavy

We ran two workloads: A balanced workload of reads and writes and a
read-heavy workload. For each of the workloads, records were selected using a
random Zipfian distribution. This distribution selects a small subset of popular
records very frequently while the majority is hit infrequently with a roughly long
tail. It is intended to approximate Internet usage where a large number of users
are active at a given time and using a user’s random cookie ID as the key. For each
of the workloads, we began each test by running a brief warm-up period to prime
any caches. This was intended to start measurements against a system that is
similar to a 2unning production system.

 Read operations: 50% Update operations: 50%

 Read operations: 95% Update operations: 5%
The number of operations actually performed depended on the throughput
achievable on each test. Each workload performed a minimum of 10 million oper-
ations, but for very high-throughput scenarios we increased the load as high a
200 million operations to ensure a reasonable test duration.

© Copyright 2013, Lineate

This data set was identical in structure but one-tenth the size. The goal was that
most if not all of the data are kept in RAM, which is the preferred setup for
Couchbase and MongoDB.
 Number of records: 50 million
 Total amount of raw data: approximately 6 GB

In-memory Data Set

10 of 52

Results

Test 1: Loading Data

Figure 1: Insert Throughput

The first step was to load each of the databases with the working set. We did this
by running YCSB’s load routine for each of the full data sets. This performed a
series of individual inserts as quickly as possible, using standard settings for each
database. The primary goal of this was to prep the database for the read and
update tests, and we used the relatively standard setting for each database in the
load. The in-memory asynchronous numbers show that both Aersopike and
Couchbase performed extremely well, all over 250 thousand inserts per second.
Couchbase had a 10-15% advantage in that scenario. In the SSD scenario, neither

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

SSD In Memory

Aerospike

Cassandra

MongoDB

Couchbase 1.8*

Couchbase 2.0*

*For Couchbase 2.0, SSD throughput numbers are based on smaller sample size
and asynchronous. Couchbase 1.8 was unable to load even the reduced data set.

© Copyright 2013, Lineate

11 of 52

Couchbase 1.8 nor 2.0 was able to load the data synchronously, so we reverted to
asynchronous operation to load the data for Couchbase 2.0. In that scenario, the
load time was still excellent, though not easily comparable to Aerospike given the
configuration differences. In both scenarios, both MongoDB and Cassandra lagged
far behind. Once the databases were loaded, we proceeded to the “meat” of our
tests by measuring both the maximum throughput each database can achieve,
and the average latency of each database at a given traffic level.

Test 2: Durable Scenario
We elected to start our throughput tests with a strong durability model, using a
dataset that, when replicated, would be significantly larger than the server’s
RAM. This test is intended to model usage for transactional data that requires
strong durability guarantees. The goal was to provide the highest throughput
given this hard requirement. We expected Aerospike to dominate this category
since it is specifically optimized for SSDs, and expected Cassandra to do quite well
for writes since it is a write-optimized and durable database. We expected Couch-
base and MongoDB to struggle since theses are both designed to keep the work-
ing set in memory. We ran the tests by using YCSB to perform each of the work-
loads as quickly as possible. We experimented with the proper number of client
machines needed to maximize database load, and found that for most of the
databases the ideal number of clients was eight, though Cassandra and MongoDB
showed only minor performance gains after four clients. Before measuring, we
performed an approximately 10 minute warm-up period (reading random
records) to bring the database into a state that is not “at rest” and ensure any
caches were properly primed. We then ran both the balanced Read/Write Work-
load at full capacity for 10 minutes (or until 10 million operations had been per-
formed, whichever is slower) followed by the Read Heavy Workload with the
same parameters.

© Copyright 2013, Lineate

12 of 52

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

Balanced Read-Heavy

Aerospike

Cassandra

MongoDB

Figure 2: Maximum Throughput -
SSD-backed Data Set

For Aerospike, Cassandra, and Mon-
-

nously, providing the strongest possi-
ble durability . We were forced to
exclude Couchbase from the official
results for this test, since when run
with either disk or replica durability
on it was unable to complete the
test .

In short, Aerospike was the dominant
performer in this test, showing dura-

faster than what the others could
achieve. Even when others were set

-
spike retained this huge advantage.

We then measured latency for vari-
ous traffic levels for each database.
We tracked read and update latencies
separately for each
workload. The graphs below show

© Copyright 2013, Lineate

2

3

2. In the case of Cassandra, we wrote both copies of the data, and read one, which
matched the durability guarantees we wanted. A similar test of writing one copy
and reading both had worse performance. Abandoning the durability/consis-
tency guarantee did not significantly affect the Read-Heavy results, but improved
performance on the Balanced Workload to about 44,000 operations per second.
For MongoDB, replication was synchronous but we left journaling as asynchro-
nous.
3. When run in asynchronous mode (with the 200 million row dataset), Couchbase
showed performance of about 41,000 disk operations per second, suggesting an
upper bound in the synchronous case.

both the full set of results, plus a zoomed version to provide more clarity into cluster of data points at lower
throughputs (lower is better).

13 of 52

Figures 3 a-d: Latency/Throughput Results - Balanced Workload

0

2,5

5

7,5

10

0 50,000 100,000 150,000 200,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Full view)

Aerospike
Cassandra
MongoDB

0

2,5

5

7,5

10

0 5,000 10,000 15,000 20,000 25,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Zoomed)

Aerospike
Cassandra
MongoDB

0

2,5

5

7,5

10

0 50,000 100,000 150,000 200,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Update Latency (Full view)

Aerospike
Cassandra
MongoDB

0

2,5

5

7,5

10

0 5,000 10,000 15,000 20,000 25,000
Av

er
ag

e
La

te
nc

y,
m

s

Throughput, ops/sec

Balanced Workload Update Latency (Zoomed)

Aerospike
Cassandra
MongoDB

© Copyright 2013, Lineate

© Copyright 2013, Lineate

14 of 52

Figures 4a-d: Latency/Throughput Results - Read-Heavy Workload

0

1

2

3

4

0 75,000 150,000 225,000 300,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Full view)

Aerospike
Cassandra
MongoDB

0

1

2

3

4

0 10,000 20,000 30,000 40,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Zoomed)

Aerospike
Cassandra
MongoDB

0

6

12

18

24

0 75,000 150,000 225,000 300,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Update Latency (Full view)

Aerospike
Cassandra
MongoDB

0

6

12

18

24

0 10,000 20,000 30,000 40,000
Av

er
ag

e
La

te
nc

y,
m

s

Throughput, ops/sec

Balanced Workload Update Latency (Zoomed)

Aerospike
Cassandra
MongoDB

Aerospike maintained sub-millisecond latencies up to its highest load in all cases. MongoDB also had very
good read performance that trails off as it approaches maximum capacity, and Cassandra had consistent write
latency while read latency increases linearly.

Both showed a significant drop in performance as they get saturated.

Again Couchbase numbers are excluded, but for smaller disk-bound data sets we witnessed linearly increasing
latency for the balanced workload, and sub-millisecond performance for reads.

© Copyright 2013, Lineate 15 of 52

16 of 52

Test 3: Fast Scenario
After getting the durable numbers, we cleared the databases and ran the
same tests again, this time with a dataset that was able to fit into RAM and
with asynchronous replication. The goal of this test was to show the maximal
performance that these databases could achieve, when liberated from the
requirement of having durable data. All the databases in this test were config-
ured to store the entire working set in memory and persist to disk and
replicas as soon as it became available. We expected this to be a test where
Couchbase would shine, since its default setup is designed to accept requests
as quickly as memcached, and persist them asynchronously.

The client setups were identical to those in Test 2.

0

100,000

200,000

300,000

400,000

500,000

600,000

700,000

800,000

900,000

1,000,000

Balanced Read-Heavy

Aerospike

Cassandra

MongoDB

Couchbase 1.8*

Couchbase 2.0*

© Copyright 2013, Lineate

Figure 5: Maximum Throughput - In Memory Data Set

In this scenario, Couchbase was the fastest performer for the balanced work-
load by about 10%, whereas Aerospike outperformed Couchbase by about
40% on the read-heavy workload. Both of these systems demonstrated truly
impressive performance, on the order of half a million to a million operations
per second across the board.

MongoDB and Cassandra were an order of magnitude slower - both were configured with enough RAM cache
to contain the full working set. Cassandra’s cache hit ratio was about 35% for the balanced workload and 70%
for the read-heavy workload.

The latency tests were conducted in the same manner as before.

In this scenario, Couchbase was the fastest performer for the balanced work-
load by about 10%, whereas Aerospike outperformed Couchbase by about
40% on the read-heavy workload. Both of these systems demonstrated truly
impressive performance, on the order of half a million to a million operations
per second across the board.

MongoDB and Cassandra were an order of magnitude slower - both were configured with enough RAM cache
to contain the full working set. Cassandra’s cache hit ratio was about 35% for the balanced workload and 70%
for the read-heavy workload.

The latency tests were conducted in the same manner as before.

17 of 52© Copyright 2013, Lineate

Figures 6a - 6d: Latency/Throughput Results (Balanced Workload)

0

5

10

15

20

0 100,000 200,000 300,000 400,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Full view)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB
0

5

10

15

20

0 10,000 20,000 30,000 40,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Read Latency (Zoomed)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB

0

2

4

6

8

0 100,000 200,000 300,000 400,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Update Latency (Full view)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB
0

2

4

6

8

0 10,000 20,000 30,000 40,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Balanced Workload Update Latency (Zoomed)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB

18 of 52© Copyright 2013, Lineate

Figures 7a - 7d: Latency Throughput Results (Read Heavy Workload)

0

4

8

12

16

0 200,000 400,000 600,000 800,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Read-Heavy Workload Read Latency (Full view)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB
0

4

8

12

16

0 20,000 40,000 60,000 80,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Read-Heavy Workload Read Latency (Zoomed)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB

0

1.5

3

4.5

6

0 200,000 400,000 600,000 800,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Read-Heavy Workload Update Latency (Full view)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB
0

1.5

3

4.5

6

0 20,000 40,000 60,000 80,000

Av
er

ag
e

La
te

nc
y,

m
s

Throughput, ops/sec

Read-Heavy Workload Update Latency (Zoomed)

Aerospike

Cassandra
Couchbase 2.0
Couchbase 1.8

MongoDB

Both Couchbase and Aerospike maintained sub-millisecond latencies up to their highest performance. For
MongoDB, latency degraded on writes but stayed consistent on reads, and the converse was true for
Cassandra (which is optimized for writes).

19 of 52© Copyright 2013, Lineate

Conclusion
The most striking result was the raw throughput number Aerospike was able to
achieve even while committing to disk across multiple nodes. We expected it to
shine in this case, but maintaining a speed of 200 thousand operations per
second with these strong guarantees put it far ahead of its nearest competitor
and at speeds we would not normally associate with ACID semantics.

When the entire data set fit into RAM and the durability guarantees are
weakened, the results showed both Couchbase and Aerospike in a near-tie in
terms of performance. Couchbase slightly outperformed Aerospike for the bal-
anced read-write workload, and Aerospike somewhat more significantly outper-
formed Couchbase for the read-heavy workload. Both posted excellent numbers
when durability is not a major concern. Of course, a lack of durability opens the
question of how the cluster recovers in the event of a failure. We plan to answer
this in our next report.

Both Cassandra and MongoDB lagged far behind the others, but it should be
pointed out that both offer a significantly larger feature set than Aerospike and
Couchbase 1.8. This test measured raw key-value performance, and the key-value
stores were the ones that shined. Quantifying secondary indexes and other fea-
tures will be done in a future report.

One thing to consider even in the asynchronous model is how an organization
might scale out their data storage. We viewed the SSD based test as important
since SSDs have higher densities and lower per-gigabyte costs than RAM. As such,
it should be possible to scale our much larger data sets on fewer nodes, which is
clearly valuable when talking about very large amounts of data. An alternative
scaling model would be provisioning larger numbers of (possibly virtualized)
RAM-based machines and ensuring that the working set will always fit into

20 of 52© Copyright 2013, Lineate

memory. When talking about data sets of 6GB or 60GB as we do in this report,
this is clearly a viable scaling option, and one that can offer higher throughput. At
truly large data sets, this scaling approach becomes more questionable.

When scaling while using more instances of RAM-backed storage, one should
consider the recovery aspect of the solution. More nodes implies a higher rate of
node failures, so recovery becomes more important. If recovery can be managed
effectively, a RAM-based cloud-oriented approach to storage might be a viable
way to scale. However, if writes to disks and replicas are done asynchronously,
recoverability can be problematic. A future report will compare database recover-
ability and virtualized performance.

Many other considerations besides raw performance have been swept under the
rug in this study. For example, all the databases except Couchbase 1.8 offer cross
datacenter replication, which is likely a consideration when deciding between
consistency, response time, and durability

As with any benchmarking tests, the results should be taken with the usual
caveats. Running application loads in bulk against a database is merely a proxy for
how they will be used in real life.

Is this a fair test?
It can certainly be argued the test was set up to achieve certain results. Since
Aerospike was specifically written to be explicitly optimized for SSDs, it is not
surprising that a test against raw SSD hardware would give it the best results.
However, the need for a high-performance key value store is a real one, and the
assumption that companies looking for maximal performance in such scenarios
would invest in servers with solid-state storage seems sound. For
applications in the space we are considering, we believe running the tests on such
hardware is reasonable, and the test is a rough approximation of similar applica-
tions we’ve built. It is also important to point out that MongoDB, Cassandra, and
Couchbase 2.0 have much broader functionality than what we test. In particular,
they have secondary indices that allow querying of data by field instead of simply
by key, and allow the databases to be used in many kinds of use cases that are

21 of 52© Copyright 2013, Lineate

currently not viable for Aerospike. A raw benchmark test here is not the best way
to illustrate their functionality. Each of these databases has clear use cases that
are not illustrated at all by a raw key-value performance test. In particular, 10gen
explicitly warns against benchmark tests as a way to describe MongoDB, and we
have used MongoDB in production with very good results for many projects that
are more document-oriented and less geared towards maximal transaction
volumes.

Future tests
This benchmark was the first of several tests we plan to run to more accurately
categorize the NoSQL landscape. We started with raw key-value performance
because it was relatively easy to measure and is a very real use case that we regu-
larly encounter. However, there are several other dimensions we plan to analyze
in the upcoming weeks and months, including:
 1. Recovery - These databases vary considerably in how well they tolerate and
recover from node failures. We are in the process of quantifying this for future
publication.
 2 Burstability - How the databases perform when data starts to exceed capacity
planning. For example, a RAM-based cluster might perform extremely well, but
when the working set grows too large suddenly, how will performance be
impacted? Different databases have different approaches to handling this
(evicting records, slowing performance, etc.)
and quantifying this would shed light on expected system stability.
 3. Cloud support - A major reason to choose a NoSQL solution is to offer hori-
zontal scalability, and the cloud is a natural choice for this. We elected to start
with bare metal hardware because such hardware can be expected to deliver the
highest raw
performance. However, a test using High IO cloud instances would be a valuable
follow up.
 4. Secondary indexes - Such a test can be quite complex, as queries across sec-
ondary indexes will hit every node in the cluster and may result in complex query
execution
paths. However, a large number of applications need more than key-value stor-
age, and a way to quantify secondary index capabilities and performance can

22 of 52© Copyright 2013, Lineate

provide insight into entirely new classes of applications.
 5. Other workload distributions - YCSB comes with a number of data set distri-
butions, and we weren’t particularly happy with any of them. The Zipfian distribu-
tion seems to be very heavily weighted to a few keys, but the random distribution
doesn’t seem like it would model real-world usage. We preferred to conduct
in-depth tests around a single distribution instead of adding more and more vari-
ables, potentially confusing the results. In the future, we plan to measure the
impact of data distributions more carefully

23 of 52© Copyright 2013, Lineate

Appendix A:
Hardware

Database Servers
We ran the tests on four server machines. Each machine had the following specs:
 CPU: 8 x Intel(R) Xeon(R) CPUE5-2665 0 @ 2.40GHz
 RAM: 31 GB
 SSD: 4 x INTEL SSDSA2CW120G3, 120 GB full capacity, 94 GB over-provisioned
size
 HDD: ST500NM0011, 500 GB, SATA III, 7200 RPM

Each server had all five databases installed, but only one running at any given
time. Each database used four SSDs simultaneously to store its data. Aerospike
accessed the disk directly; the others accessed the data via software RAID0. For
all databases, the data were distributed across all four SSDs. Other disks were
used to some small capacity on individual tests, but only in ancillary roles. For
example, we tested three ways of storing Cassandra’s commit log, as described in
Appendix C. The SSDs for Cassandra, both Couchbase versions and MongoDB
were formatted as ext4. The file systems are mounted with the “noatime” option
(the inode access times are not updated). While the RAID chunk size was left at
the default (521k), the “readahead” parameter was changed to 32 sectors for the
whole RAID device and to 8 sectors for each SSD. Aerospike was tested in two
different configurations: by using the disk as a block device, and by storing the
data in RAM. All the disks were overprovisioned, leaving 21% of disk space empty.
This is consistent with recommendations made by 10gen and Aerospike (the
other vendors had no documentation around this). Overprovisioning can be done
simply by leaving 21% of the disk unpartitioned. In our case, we used the hdparm
command as described in Aerospike guide.

24 of 52© Copyright 2013, Lineate

Disks were initialized by wiping out the data directory (for Cassandra, MongoDB,
Couchbase) or by zeroing out the block from /dev/zero (for Aerospike). The
system I/O scheduler was set to be NOOP.

The rotational drive was used to store logs and binaries. Network was 1Gbps Eth-
ernet. Higher network bandwidth would be particularly valuable in the case of
Couchbase.

Client Machines
We used up to ten client machines to generate load to the database with YCSB.
Each had the following specs:
 CPU: 4 x Intel(R) Core(TM) i5-3470 CPU @ 3.20GHz
 RAM: 3.7 GB
 HDD: ST500DM002-1BD142, 500 GB, SATA III, 7200 RPM

Appendix B:
Installed Software

25 of 52© Copyright 2013, Lineate

Database Servers

Client Machines

Each of the database server machines had the following software configured:
1. OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
2. JDK: Oracle JDK 7u9
3. Databases:
 - Aerospike 2.1.2-100-g35e99a9
 - Couchbase 1.8.1
 - Couchbase 2.0.0
 - Cassandra 1.1.7
 - MongoDB 2.2.2

1. OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
2. JDK: OpenJDK 6.0u24
3. Customized YCSB forked from the commit on September 10, 2012
(Aerospike guide)
 - Couchbase plugin downloaded from Aerospike guide.
 - Aerospike plugin provided by Aerospike
 - Cassandra plugin from YCSB distribution
 - MongoDB plugin from YCSB distribution, but with the following
customizations:
 - Upgraded to use MongoDB 2.10.1 drivers
 - Additional code to enable routing read requests to secondary nodes
 - See Appendix E for information on the changes we made as well as the
location of the source code.

Appendix C:
Database Configuration

26 of 52© Copyright 2013, Lineate

Cassandra
Cassandra 1.1.7 was installed as a four-node cluster. We ran the tests using 3 dif-
ferent disc configurations. In the first variant, three dedicated SSD disks on each
machine were formatted as ext4 and used to store the data. Commit logs were
written to a separate SSD disk for performance reasons. (Since Cassandra is opti-
mized for writes, the first thing it will do is append writes to a commit log, persist-
ing data to the main disk in batches. We placed these on separate disks to reduce
possible contention between these operations.). In the second variant, four SSD
disks were used for data and one HDD disk was used for commit logs. In the third
variant, four SSD disks were used both for data and for the commit log. The third
configuration gave the best results.

Unlike the other databases tested, Cassandra uses a ring topology in its configura-
tion and the nodes need to be made aware of “seed” nodes (who help them join
the ring) explicitly. At configuration time, it was necessary to specify which tokens
map to which instance.

Other settings
1. ntpd was running on all machines.
2. Swap space was set to the size of main memory and left on the rotational disk
3. The maximum number of open files for all users was increased from 1024 to
16384 (ulimit nofiles)
4. Network cards with multiqueue support were installed: Intel Corporation I350
Gigabit Network Connection, and the igb network driver was used

27 of 52© Copyright 2013, Lineate

 "0": 0,
 "1": 425352958651173079329218259 28971026432,
 "2": 850705917302346158658436518 57942052864,
 "3": 127605887595351923798765477 786913079296
 }
}

 MAX_HEAP_SIZE="15G"
 HEAP_NEWSIZE="800M"

By default, the row cache for Cassandra is disabled; we enabled it and set it to its
max size: 10GB per node. The cache is not in the Java heap space. Enabling the

effect on latency. Even on inmemory tests, the cache hits did not exceed 70%.

.

Cassandra Cassandra

Cassandra Cassandra

Ring YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

 to create the

$./tokentoolv2.py 4
{
 "0": {

Cassandra has tunable consistency levels. Each read or write can explicitly state

benchmark project, we used the weakest and fastest consistency level (ONE)
for both reads and writes4.

conf/cassandra-env.sh):

4

https://raw.github.com/riptano/ComboAMI/2.2/tokentoolv2.py
http://www.datastax.com/docs/1.1/dml/data_consistency#tunable-consistency

 "0": 0,
 "1": 425352958651173079329218259 28971026432,
 "2": 850705917302346158658436518 57942052864,
 "3": 127605887595351923798765477 786913079296
 }
}
Cassandra has tunable consistency levels. Each read or write can explicitly state
what level of database consistency is needed for that operation. Since this was a
benchmark project, we used the weakest and fastest consistency level (ONE) for
both reads and writes⁸.

The JVM used to run Cassandra was initialized with the following settings (from
conf/cassandra-env.sh):
 MAX_HEAP_SIZE="15G"
 HEAP_NEWSIZE="800M"

By default, the row cache for Cassandra is disabled; we enabled it and set it to its
max size: 10GB per node. The cache is not in the Java heap space. Enabling the
cache dramatically increased the read throughput – but did not have a significant
effect on latency. Even on inmemory tests, the cache hits did not exceed 70%.

28 of 52© Copyright 2013, Lineate

Variant 2
4 SSDs for data + 1 HDD for commitlog
 mdadm --create --verbose /dev/md0 --level=0 --raid-devices=4 /dev/sdb /dev/sdc /dev/sdd/dev/s-
de
 mkfs.ext4 /dev/md0
 mkdir /mnt/raid
 mount /dev/md0 /mnt/raid
 mkdir /mnt/log
Inserts: 69k ops/sec
Heavy Update: 46k ops/sec
Mostly Read: 30k ops/sec

As with all the databases, we used a replication factor of two. Other major set-
tings used were:
 Partitioner: RandomPartitioner
 Initial token space: 2^127 / 4
 Memtable space: 4Gb
 Concurrent reads: 64
 Concurrent writes: 64
 Compression: SnappyCompressor
 Commit log sync: 10,000 ms

The disc configurations for each variant follow:

Variant 1
3 SSD for data + 1 SSD for commitlog
 mdadm --create --verbose /dev/md0 --level=0 --raid-devices=3 /dev/sdb /dev/sdc /dev/sdd
 mkfs.ext4 /dev/md0
 mkdir /mnt/raid
 mount /dev/md0 /mnt/raid
 mkfs.ext4 /dev/sde
 mkdir /mnt/log
 mount /dev/sde /mnt/log
Inserts: 72k ops/sec
Heavy Update: 46k ops/sec
Mostly Read: 34k ops/sec

29 of 52© Copyright 2013, Lineate

Variant 3
4 SSDs for data and commitlog
 Inserts: 78k ops/sec
 Heavy Update: 45k ops/sec
 Mostly Read: 32k ops/sec

And below are the settings for conf/cassandra.yaml:
 cluster_name: 'Test Cluster'
 initial_token: 0
 hinted_handoff_enabled: true
 max_hint_window_in_ms: 3600000 # one hour
 hinted_handoff_throttle_delay_in_ms: 1
 authenticator: org.apache.cassandra.auth.AllowAllAuthenticator
 authority: org.apache.cassandra.auth.AllowAllAuthority
 partitioner: org.apache.cassandra.dht.RandomPartitioner
 data_file_directories:
 - /mnt/raid/cassandra/data
 commitlog_directory: /mnt/raid/cassandra/commitlog
 key_cache_size_in_mb:
 key_cache_save_period: 14400
 row_cache_size_in_mb: 10240
 row_cache_save_period: 0
 row_cache_provider: SerializingCacheProvider
 saved_caches_directory: /var/lib/cassandra/saved_caches
 commitlog_sync: periodic
 commitlog_sync_period_in_ms: 10000
 commitlog_segment_size_in_mb: 32
 seed_provider:
 - class_name: org.apache.cassandra.loca
 tor.SimpleSeedProvider
 parameters:
 - seeds: "e1.citrusleaf.local"
 flush_largest_memtables_at: 0.75
 reduce_cache_sizes_at: 0.85
 reduce_cache_capacity_to: 0.6
 concurrent_reads: 64
 concurrent_writes: 64
 memtable_flush_queue_size: 4
 trickle_fsync: false
 trickle_fsync_interval_in_kb: 10240
 storage_port: 7000

 Read operations: 95% Update operations: 5%
The number of operations actually performed depended on the throughput
achievable on each test. Each workload performed a minimum of 10 million oper-
ations, but for very high-throughput scenarios we increased the load as high a
200 million operations to ensure a reasonable test duration.

30 of 52© Copyright 2013, Lineate

 ssl_storage_port: 7001
 listen_address: e1.citrusleaf.local
 rpc_address: e1.citrusleaf.local
 rpc_port: 9160
 rpc_keepalive: true
 rpc_server_type: sync
 thrift_framed_transport_size_in_mb: 15
 thrift_max_message_length_in_mb: 16
 incremental_backups: false
 snapshot_before_compaction: false
 auto_snapshot: true
 column_index_size_in_kb: 64
 in_memory_compaction_limit_in_mb: 64
 multithreaded_compaction: false

The database was initialized using the following commands:
 CREATE KEYSPACE usertable
 WITH placement_strategy = 'org.apache.cas
sandra.locator.SimpleStrategy'
 AND strategy_options = {replication_factor:2};
 use usertable;
 CREATE COLUMN FAMILY data
 WITH comparator = UTF8Type
 AND key_validation_class = UTF8Type
 AND caching = all;

Couchbase 1.8
Couchbase 1.8.1 was installed on four server nodes are configured as a cluster.
Four SSDs accessible via software RAID0 formatted as ext4 were used to store the
data.

One thing to note is that Couchbase defines its replication factor as “Number of
replica (backup) copies)”, so a setting of 1 corresponds to our replication factor of
2 for other databases.

31 of 52© Copyright 2013, Lineate

Below are the settings for couchbase-cli server-info:
{
 "availableStorage": {
 "hdd": [
 {
 "path": "/",
 "sizeKBytes": 447427440,
 "usagePercent": 6
 },
 {
 "path": "/dev",
 "sizeKBytes": 16451884,
 "usagePercent": 1
 },

 {
 "path": "/run",
 "sizeKBytes": 6584384,
 "usagePercent": 1
 },
 {
 "path": "/run/lock",
 "sizeKBytes": 5120,
 "usagePercent": 0
 },
 {
 "path": "/run/shm",
 "sizeKBytes": 16460960,
 "usagePercent": 0
 },

Couchbase Couchbase

Couchbase Couchbase

Cluster YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

32 of 52© Copyright 2013, Lineate

 {
 "path": "/boot",
 "sizeKBytes": 233191,
 "usagePercent": 33
 },
 {
 "path": "/mnt/raid",
 "sizeKBytes": 364603720,
 "usagePercent": 1
 }
]
 },
 "clusterCompatibility": 1,
 "clusterMembership": "active",
 "hostname": "192.168.109.168:8091",
 "interestingStats": {
 "curr_items": 0,
 "curr_items_tot": 0,
 "vb_replica_curr_items": 0
 },
 "mcdMemoryAllocated": 25720,
 "mcdMemoryReserved": 25720,
 "memoryFree": 22558875648.0,
 "memoryQuota": 25720,
 "memoryTotal": 33712046080.0,
 "os": "x86_64
 -unknown
 -linux
 -gnu",
 "otpCookie": "opztzvwywxeczcji",
 "otpNode": "ns_1@192.168.109.168",
 "ports": {
 "direct": 11210,
 "proxy": 11211
 },
 "status": "healthy",
 "storage": {
 "hdd": [
 {
 "path": "/mnt/raid/couchbase",
 "quotaMb": "none",
 "state": "ok"

33 of 52© Copyright 2013, Lineate

 }
],
 "ssd": []
 },
 "storageTotals": {
 "hdd": {
 "free": 369620667188.0,
 "quotaTotal": 373354209280.0,
 "total": 373354209280.0,
 "used": 3733542092.0,
 "usedByData": 7281024
 },
 "ram": {
 "quotaTotal": 26969374720.0,
 "total": 33712046080.0,
 "used": 11153170432.0,
 "usedByData": 55127464
 }
 },
 "systemStats": {
 "cpu_utilization_rate": 0.4987531172069 8257,
 "swap_total": 34326179840.0,
 "swap_used": 6639616
 },
 "uptime": "1782",
 "version": "1.8.1-937-rel-community"
}

The couchbase-cli bucket-list was left at the default settings:
 test
 bucketType: membase
 authType: sasl
 saslPassword:
 numReplicas: 1
 ramQuota: 1.0762584064e+11
 ramUsed: 53101028392.0

Here is the configuration used to set up the db schema.

34 of 52© Copyright 2013, Lineate

Couchbase 1.8
Couchbase 2.0 was officially released
on December 12, 2012. As with Couchbase 1.8, it was installed on four server
nodes are configured as a cluster, and four SSDs accessible via software RAID0
formatted as ext4 were used to store the data.

Below are the settings for couchbase-cli server-info:
 {
 "availableStorage": {
 "hdd": [
 {
 "path": "/",
 "sizeKBytes": 447427440,
 "usagePercent": 9
 },
 {
 "path": "/dev",
 "sizeKBytes": 16451884,
 "usagePercent": 1
 },
 {
 "path": "/run",
 "sizeKBytes": 6584384,
 "usagePercent": 1
 },
 {

35 of 52© Copyright 2013, Lineate

 "path": "/run/lock",
 "sizeKBytes": 5120,
 "usagePercent": 0
 },
 {
 "path": "/run/shm",
 "sizeKBytes": 16460960,
 "usagePercent": 0
 },
 {
 "path": "/boot",
 "sizeKBytes": 233191,
 "usagePercent": 33
 },
 {
 "path": "/mnt/raid",
 "sizeKBytes": 364603720,
 "usagePercent": 52
 }
]
 },
 "clusterCompatibility": 131072,
 "clusterMembership": "active",
 "couchApiBase":
 "http://192.168.109.168:8092/",
 "hostname": "192.168.109.168:8091",
 "interestingStats": {
 "couch_docs_actual_disk_size": 9205562348,
 "couch_docs_data_size": 6887104963,
 "couch_views_actual_disk_size": 0,
 "couch_views_data_size": 0,
 "curr_items": 12506364,
 "curr_items_tot": 25003344,
 "mem_used": 7481749880,
 "vb_replica_curr_items": 12496980
 },
 "mcdMemoryAllocated": 25720,
 "mcdMemoryReserved": 25720,
 "memoryFree": 566579200,
 "memoryQuota": 25720,
 "memoryTotal": 33712046080,
 "os": "x86_64-unknown-linux-gnu",

36 of 52© Copyright 2013, Lineate

 "otpCookie": "qdfyjoucywviqpah",
 "otpNode": "ns_1@192.168.109.168",
 "ports": {
 "direct": 11210,
 "proxy": 11211
 },
 "status": "healthy",
 "storage": {
 "hdd": [
 {
 "index_path": "/mnt/raid/couchbase/data",
 "path": "/mnt/raid/couchbase/data",
 "quotaMb": "none",
 "state": "ok"
 }
],
 "ssd": []
 },
 "storageTotals": {
 "hdd": {
 "free": 179210020455,
 "quotaTotal": 373354209280,
 "total": 373354209280,
 "used": 194144188825,
 "usedByData": 9205562348
 },
 "ram": {
 "quotaTotal": 26969374720,
 "quotaUsed": 26969374720,
 "total": 33712046080,
 "used": 33145466880,
 "usedByData": 7481749880
 }
 },
 "systemStats": {
 "cpu_utilization_rate": 0.625782227784 7309,
 "swap_total": 34326179840,
 "swap_used": 15790080
 },
 "thisNode": true,
 "uptime": "15975",
 "version": "2.0.0-1976-rel-enterprise"

37 of 52© Copyright 2013, Lineate

 }

Here is the configuration used to set up the db schema.

Aerospike
Aerospike 2.1.2-100-g35e99a9 was used in a four node cluster. The free trial is a
fully functional but time-limited database.

Unlike the other three databases, Aerospike uses the SSD natively as a block
device when storing the data on discs. As with the other databases, we used four
SSDs accessible via software RAID0 formatted as ext4, only instead of formatting
it as ext4 we simply initialized the drives to all zeros:
 dd if=/dev/zero of=/dev/sdb bs=128k
The cluster heartbeat was configured to use multicast, not mesh.

38 of 52© Copyright 2013, Lineate

Aerospike Aerospike

Aerospike Aerospike

Multitask Cluster

YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

For the SSD tests, the /etc/citrus

leaf/citrusleaf.conf we used is as follows:
 service {
 user root
 group root
 run-as-daemon
 transaction-queues 8
 transaction-threads-per-queue 3
 service-threads 8
 fabric-workers 24
 migrate-threads 1
 migrate-xmit-hwm 6
 migrate-xmit-lwm 1
 transaction-retry-ms 1000
 transaction-max-ms 1000
 transaction-pending-limit 200 # Max # of same-key transactions on queue
 ticker-interval 10
 nsup-period 120
 nsup-max-deletes 25000
 nsup-queue-hwm 2
 nsup-queue-lwm 1
 nsup-startup-evict true
 defrag-queue-hwm 20
 defrag-queue-lwm 5

39 of 52© Copyright 2013, Lineate

 defrag-queue-escape 10
 defrag-queue-priority 10
 proto-fd-max 15000
Keep this less than 1024 so the server starts up even on low-end machines.
 paxos-single-replica-limit 1
 # Number of nodes where the replica count is
automatically reduced to 1.
 transaction-repeatable-read false
 pidfile /var/run/cld.pid
 trial-account-key P3NqitOnyXBfCb0Xd3vqmPwXj2M60TnanXtre3OEY3g
}
Log configuration. Log to stderr by default. Log file must be an absolute path.
 logging {
 file /var/log/citrusleaf.log {
 context any info
 # context batch debug
 # context rw detail
 }

 # console {
 # context any info
 # }
 #
 }

 network {
 service {
 address any
 port 3000
 reuse-address
 }

 heartbeat {
 address 239.1.99.223
 mode multicast
 port 9918
 interval 150
 timeout 15
 }

 fabric {
 address any

40 of 52© Copyright 2013, Lineate

port 3001
 }
 info {

address any
port 3003

 }
 }
 #namespace test {
 # replication-factor 2
 # storage-engine memory
 #}

 namespace test {
replication-factor 2
high-water-memory-pct 60
high-water-disk-pct 50
stop-writes-pct 90
memory-size 32212254720

30G
default-ttl 2592000

default 30 days expiration

Warning - legacy data in defined raw partition devices will be erased.
These partitions must not be mounted by the filesystem.
 storage-engine device {

scheduler-mode noop
for SSD

device /dev/sdb
uncomment this line when correct device is used.

device /dev/sdc
device /dev/sdd
device /dev/sde
load-at-startup true
write-block-size 131072
defrag-period 120
defrag-lwm-pct 50
defrag-max-blocks 4000
defrag-startup-minimum 10

 }
}

These are mostly default values. The most important thing to consider here is the

41 of 52© Copyright 2013, Lineate

proper settings for high-water-disk-pct. Like Cassandra, Aerospike optimizes writes by
streaming them sequentially. The number of records was modified to fit into the
watermark and avoid object evictions. The index fits into memory.

Also, we tested Aerospike storing the data in RAM. For the RAM tests, both the
data and index were modified to fit into memory. We used the following
configuration file:
 service {
 user root
 group root
 run-as-daemon
 transaction-queues 8
 transaction-threads-per-queue 3
 service-threads 8
 fabric-workers 24
 migrate-threads 1
 migrate-xmit-hwm 6
 migrate-xmit-lwm 1
 transaction-retry-ms 1000
 transaction-max-ms 1000
 transaction-pending-limit 200
Max # of same-key transactions on queue
 ticker-interval 10
 nsup-period 120
 nsup-max-deletes 25000
 nsup-queue-hwm 2
 nsup-queue-lwm 1
 nsup-startup-evict true
 defrag-queue-hwm 20
 defrag-queue-lwm 5
 defrag-queue-escape 10
 defrag-queue-priority 10
 proto-fd-max 15000
Keep this less than 1024 so the server starts up even on low-end machines.
 paxos-single-replica-limit 1
Number of nodes where the replica count is
automatically reduced to 1.
 transaction-repeatable-read false
 pidfile /var/run/cld.pid
 trial-account-key P3NqitOnyXBfCb0Xd3vqmPwXj2M60TnanXtre3OEY3g
}

42 of 52© Copyright 2013, Lineate

Log configuration. Log to stderr by default. Log file must be an absolute path.
logging {
 file /var/log/citrusleaf.log {
 context any info
context batch debug
context rw detail
 }

console {
context any info
}
#
}

network {
 service {
 address any
 port 3000
 reuse-address
 }

 heartbeat {
 address 239.1.99.223
 mode multicast
 port 9918
 interval 150
 timeout 15
 }

 fabric {
 address any
 port 3001
 }

 info {
 address any
 port 3003
 }
}
#namespace test {
replication-factor 2
storage-engine memory

43 of 52© Copyright 2013, Lineate

#}
namespace test {
 replication-factor 2
 high-water-memory-pct 60
 high-water-disk-pct 50
 stop-writes-pct 70
 memory-size 32212254720
30G
 default-ttl 2592000
default 30 days expiration

Warning - legacy data in defined raw partition devices will be erased.
These partitions must not be mounted by the filesystem.
storage-engine device {
 file /var/data/citrusleaf/test.data
data file name on rotational disk
 filesize 137438953472
128G - use disk file up to 128G for
this namespace
 data-in-memory true
keep a copy of all data in memory always
 defrag-period 120
run defrag every 120 seconds
 defrag-lwm-pct 45
reclaim blocks that are less than 45% full
 defrag-max-blocks 4000
defragment at most 4000 disk blocks in each run
 defrag-startup-minimum 10
server needs at least 10% free space at startup
 }

}

We used MongoDB 2.2.2 to perform the tests. Four SSDs accessible via software
RAID0 formatted as ext4 were used to store the data.

MongoDB has a different approach to clustering than the other databases.
Instead of one monolithic cluster, MongoDB uses shards of replica sets. Each
replica set is responsible for a set of keys, and contains a Primary which by default

MongoDB

44 of 52© Copyright 2013, Lineate

handles all read and write requests, and one or more Secondaries which are used
in recovery. In our setup, we divided the four node cluster into two replica sets,

setup, but seemed suitable for a benchmarking test.

our setup, we placed the Arbiter on one of the client nodes, which is a poor deci-
-

quate to perform our failover tests. There is also a mongos process which lived on

shards (replica sets).

 Server Node 1: mondod as Primary of Shard 1
 Server Node 2: mongod as Secondary of Shard 1
 Server Node 3: mongod as Primary of Shard 2
 Server Node 4: mongod as Secondary of Shard 2, mongod as Arbiter of Shard 2
 Client Nodes 1-8: YCSB, mongos
 Client Node 1-2:
 Client Node 3: mongod as Config server

The sharding key was the id generated by YCSB. Care must be taken when gener-

All write requests to MongoDB were done with writeConcern=normal. This caused
writes to return successfully as soon as they are sent to the server (barring net-

guarantees, but we used it to maximize benchmark performance. All writes were
done to the Primary nodes of replica-sets.

.

config database is lost.

5

45 of 52© Copyright 2013, Lineate

MondoDB
Primary

MondoDB
Secondary

Arbiter

MondoDB
Primary

MondoDB
Secondary

Arbiter

Select at connection time

YCSB
Client

DB Plugin

Mongos

YCSB
Client

DB Plugin

Mongos

Inactive
Client

DB Plugin

The following steps were used to set up the cluster:

Initialization of Primary:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath
mongod.log --logappend --quiet --fork
rs.initiate({ _id: "shard1", members: [{ _id: 0, host : "e1.citrusleaf.local",
priority: 2 }] })

All read requests to MongoDB were done with readPreference=primaryPreferred. This
meant that all read requests are also routed to the Primary. This may seem coun-
terintuitive, but in our tests performed better than routing reads to the second-
ary. The large amount of replication traffic being processed by the Secondary
actually made it slower than the Primary in servicing read requests.

Note: The ability to set readPreference was not part of YCSB. We upgraded the Mon-
goDB driver from version 2.8.0 (from before the Mongo 2.2 release) to version
2.10.1 and allowed the readPreference to be set as a configuration. The new code
has been submitted for approval to the YCSB master.
NUMA note: these servers did not use NUMA.
Journals were located on the same RAID0 of SSDs as the data.

46 of 52© Copyright 2013, Lineate

Initialization of Secondary:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath
mongod.log --logappend --quiet --fork
rs.add("e2.citrusleaf.local") # run on primary

Initialization of Arbiter:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath mon-
god.log --logappend --quiet --fork rs.addArb("r2.citrusleaf.local")

Start config server:
/opt/mongodb/bin/mongod --dbpath /mnt/mongodb/data --configsvr --logpath mongod.log --logap-
pend --quiet --fork
Start mongos:
/opt/mongodb/bin/mongos --configdb r5.citrusleaf.local --logpath mongos.log --logappend --quiet
--fork

Initialize sharding:
sh.addShard("shard1/e1.citrusleaf.local")
sh.addShard("shard2/e3.citrusleaf.local")
sh.enableSharding("ycsb")
sh.shardCollection("ycsb.usertable", { "_id": 1 })

Note: Dropping the collections causes the sharding data (saved on the config
server) to be lost.

47 of 52© Copyright 2013, Lineate

Appendix D:
Test List

Load 50 Million (or 500 Million) records to 4 node cluster
Load the complete dataset into each database. This was done once and then
reused for each of the following tests.

Metrics: throughput, average latency for insert operations.

Find maximum performance, Workload A
Run YCSB Workload A on the cluster without limiting the throughput artificially. A
warm-up period of 10 minutes was used to prime the cache before metrics were
gathered.

Metrics: throughput, average latency for read and update operations, cache hit
ratio.

Find maximum performance, Workload B
Same as previous, but with workload B.

Find relationship of latency on throughput, Workload A
Run YCSB Workload A on the cluster while throttling throughput from YCSB. The
throughput was increased until the it reaches the maximum found in the prior
tests. The throughput levels tested were: 1k, 2k, 4k, 6k, 8k, 10k, 15k, 20k, 25k,
30k, 35k, 40k, 45k, 50k, 75k, 100k, 125k, 150k, 175k, 200k, 250k, 300k, 350k,
400k, 450k, but in some cases not every point was plotted to increase clarity.

48 of 52© Copyright 2013, Lineate

Find relationship of latency on throughput, Workload B
Same as previous, but with workload B.

Metrics: graphs of average latency vs. throughput for read and update
operations.

Number of operations for each throughput level: 10,000,000

Metrics: graphs of average latency vs. throughput for read and update
operations.

49 of 52© Copyright 2013, Lineate

Appendix E:
YCSB Customizations

Lineate modified YCSB to provide multi-client automation as well as a variety of
enhancements to increase load, improve stability, and test consistency and dura-
bility models. The customized code can be found at
https://github.com/thumbtack-technology/ycsb. (It was taken from the sources
committed to https://github.com/thumbtack-technology/ycsb on September 10,
2012.)

YCSB includes clients for MongoDB and Cassandra by default. We modified the
MongoDB driver to support different read preferences.

The Couchbase client code was written by Couchbase and was taken from
https://github.com/thumbtack-technology/ycsb. We modified it to support syn-
chronous replication as a configuration option.

The Aerospike client code was provided by Aerospike. We worked with Aerospike

Configuration
YCSB runs in 32 threads on each client machine. We found this number to be
optimal. Four or eight client machines were run simultaneously for most of tests.

Java was run using default settings.

Automation
A set of Fabric commands were added to the base install to provide automation
across multiple client machines to perform tasks such as:
 • Data loading

50 of 52© Copyright 2013, Lineate

List of Changes to Core YCSB
Upgrade of MongoDB client
We upgraded the MongoDB driver from version 2.8.0 (appeared before Mongo
2.2 release) to version 2.10.1 and allow the readPreference to be set as a
configuration.

Also, now all the write errors are printed to stderr.

We added the ability to display operations’ result codes in more detail.

New configuration properties
mongodb.readPreference = primary|primaryPreferred|secondary|secondaryPreferred

Improvements of Aerospike client

YCSB has features to limit throughput, but uses the average throughput for the
whole experiment. This causes peaks after node failures in failover tests. We
modified YCSB to keep the desired throughput on the same level, without peaks,
by throttling based on the average throughput over the last 100 ms.

Throttling improvements

Output improvements
• Print current statistics to stderr every 2 secs instead of 10 secs
• Print intermediate statistics (identical to final) to stdout in every configured

• Running workloads
• Checking status
• Aggregating logs
• Startup / shutdown

Instructions how to use these automation tasks can be found in the source.

https://www.mongodb.com/docs/manual/applications/replication/#read-preference

51 of 52© Copyright 2013, Lineate

Field name
By default YCSB names the database record fields as “field” + a number. This new
configuration option allows replacing the “field” prefix with something shorter.
This was critical for producing record sizes small enough not to saturate network
bandwidth at very high throughput levels.

New configuration properties
fieldnameprefix: string prefix for the field name (default: “field”)

time interval in order to avoid losing data on YCSB hangs or crashes
 • Print final statistics on YCSB process shutdown

New configuration properties
exportmeasurementsinterval: interval time for exporting measurements in out stream in
milliseconds (default: 1000)

Warm-up
This change forces YCSB to do some read operations before gathering statistics, in
order to ensure the database is in a steady state. The length of the warm-up can
be limited by number of operations or by time period. Note: This appears to
cause some problems with Couchbase, so for the tests described in this report
the warm-ups were done manually.

New configuration properties
warmupoperationcount: number of operations in warmup phase, if zero then don't warmup
(default: 0)
warmupexecutiontime: execution time of warmup phase in milliseconds, if zero then don't warmup
(default: 0)

52 of 52© Copyright 2013, Lineate

New configuration properties
 ignoreinserterrors: set to true to activate the new feature

Retries
Added the ability to retry failed operations. These retries are done within the
same operation, so they don’t affect the number of operations reported (but do
increase the reported latency of the operation, which we feel is fair).

The original YCSB stops if it encounters an error on insert; this setting allows
retries on insert as well.

New configuration properties
 readretrycount: number of retries if read fails, if zero then don't retry (default: 0)
 updateretrycount: number of retries if update fails, if zero then don't retry (default: 0)
 insertretrycount: number of retries if insert fails, if zero then don't retry (default: 0)
 retrydelay: delay between retries in milliseconds (default: 0)

Reconnections
If YCSB stops operations for some reason (e.g. cluster reconfiguration or other
issues which causes the working threads to be blocked) we force it to reconnect
to the DB (reinitializing the DB client). This prevents many kinds of YCSB-related
problems with failover tests.

New configuration properties
 reconnectiontarget: the throughput value threshold when to do reconnect

Inserts with errors
The new configuration option was added to allow errors on inserts.

Usually YCSB stops when any operation fails on load phase. This setting makes it
possible to ignore such errors and continue inserting.

THANKS FOR
READING

CONTACT US

https://www.lineate.com/contact#project-form

