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Overview
As companies deal with ever larger amounts of data and increasingly demanding 
workloads, a new class of databases has taken hold.  Dubbed “NoSQL”, these 
databases trade some of the features used by traditional relational databases in 
exchange for increased performance and/or partition tolerance.  But as NoSQL 
solutions have proliferated and differentiated themselves (into key-value stores, 
document databases, graph databases, and “NewSQL”), trying to evaluate the 
database landscape for a particular class of problem becomes more and more 
difficult.  In this paper we attempt to answer this question for one specific, but 
critical, class of functionality -  applications that need the highest possible raw 
performance for a reliable storage engine.      

There have been a few attempts to provide standardized tools to measure perfor-
mance or other characteristics, but these have been hobbled by the lack of a clear 
mandate on exactly what they’re testing, plus an inability to measure load at the    
highest volumes. In addition, there is an implicit tradeoff between the consistency 
and durability requirements of an application and the maximum throughput that 
can be processed.  What is needed is not an attempt to quantify every NoSQL 
solution into on e artificial bucket, but a more systemic analysis of how some of 
these databases can achieve under assumptions that mirror real-world applica-
tion needs.    

We attempted to provide a comprehensive answer to one specific set of use cases 
for NoSQL databases - consumer-facing applications which require extremely high 
throughput and low latency, and whose information can be represented using a 
key-value schema. In particular, we look at to common scenarios. We consider 
applications that have strong durability needs, where every transaction must be 
committed to disk and replicated in case of node failure, and we also consider 
applications that are willing to relax these requirements in order to achieve the 
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highest possible speed.

Key-value storage is of course a subset of what NoSQL databases can do. Never-
theless, it is a real-world need currently demanded by most companies in the Ad 
Tech industry as well as an increasing number of other applications ranging from 
e-commerce “flash sale” applications to social platforms to financial engines.
We plan to follow up this paper with additional studies into other major NoSQL
use cases, including document-oriented applications, graph-based applications,
and big data analytics. Attempting to evaluate them all together conflates too
many different needs with too many different kinds of required optimizations,
and prevents meaningful comparison.

Test
Description
In this test, we analyzed performance characteristics of four key-value datastores: 
Cassandra, Couchbase (versions 1.8 and the just-released 2.0), Aerospike, and 
MongoDB¹. We performed the test using a modified version of the Yahoo Cloud 
Serving Benchmark (YCSB) from Yahoo!
Research, which has become something of a standard for trying to measure 
NoSQL performance.

Our goal was to measure their suitability for classes of applications that have 
extremely high transactional loads and who can architect their applications 

1. MongoDB is actually a document database. While it can be used as a key-value
store, it is not specifically optimized for this scenario. However, we see significant
interest from our customers in using it as a key value store, so we include it here.

© Copyright 2013, Lineate

around a basic set of operations in order to achieve this scale. This is a real-world 
problem in industries ranging from real-time bidding markets to gaming. In partic-
ular, we tested how such applications behave under hardware that would be used 
in the real world, i.e. non-virtualized systems with data either in RAM or stored to 
solid state drives, and investigated tradeoffs between raw speed and durability.

We opted for a narrow set of tests that could run against all systems, in order to 
provide a baseline of functionality. Our concern was to address those applications 
that need the absolute highest performance. Features such as secondary indexes 
(in Couchbase 2.0, Cassandra, and MongoDB), while valuable and worthy of study, 
do not directly impact the question at hand.

Similarly, at every phase of the project we elected to limit the number of variables 
in play. YCSB offers a range of data distributions, operations, workloads, all of 
which have implications downstream at the database server level. Rather than 
providing a bunch of numbers around a bunch of theoretical models, we attempt-
ed to narrow down on a very specific set of assumptions and optimize the sys-
tems around them. We felt such an experiment provided more actionable data 
than a broad but untuned set of graphs and numbers.
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around a basic set of operations in order to achieve this scale. This is a real-world 
problem in industries ranging from real-time bidding markets to gaming. In partic-
ular, we tested how such applications behave under hardware that would be used 
in the real world, i.e. non-virtualized systems with data either in RAM or stored to 
solid state drives, and investigated tradeoffs between raw speed and durability.

We opted for a narrow set of tests that could run against all systems, in order to 
provide a baseline of functionality. Our concern was to address those applications 
that need the absolute highest performance. Features such as secondary indexes 
(in Couchbase 2.0, Cassandra, and MongoDB), while valuable and worthy of study, 
do not directly impact the question at hand.

Similarly, at every phase of the project we elected to limit the number of variables 
in play. YCSB offers a range of data distributions, operations, workloads, all of 
which have implications downstream at the database server level. Rather than 
providing a bunch of numbers around a bunch of theoretical models, we attempt-
ed to narrow down on a very specific set of assumptions and optimize the sys-
tems around them. We felt such an experiment provided more actionable data 
than a broad but untuned set of graphs and numbers.

There have been a few NoSQL benchmarking studies published along similar lines. 
YCSB was the foundation for most of these, and Yahoo! Research’s 2010 paper 
Benchmarking Cloud Serving Systems with YCSB is excellent reading for anyone 
interested in the topic. A more recent study by Altoros entitled A vendor-indepen-
dent comparison of NoSQL databases: Cassandra, HBase, MongoDB, Riak was 

Why another
benchmark?
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recently published in Network  World. However, we felt that both of these stud-
ies, as well as others we encountered, had two major issues preventing them 
from addressing the questions we were trying to answer. The first was that they 
did not focus on specific use cases, and tried to provide a broad metric across a 
wide variety of problem classes. The second was that they were run on hardware 
with rotational drives, which seemed like a poor assumption for those companies 
looking to handle transactional data at the scale being discussed. The software 
configurations in these studies were also not necessarily optimized for the use 
cases considered here, and no concentrated effort was made in order to normal-
ize the durability and replication settings across systems. In contrast, we preferred 
to test a narrower set of databases but in a highly optimized way. Our goal with 
this study was purely to determine how these key-value stores perform under 
extremely high loads. That meant not only using raw hardware and solid state 
drives, but configuring each database in question to optimally handle the work-
load. We did both to the best of our ability, and by soliciting input from each of 
the vendors.

One last major point: The YCSB tool, which is rapidly becoming the standard for 
benchmarking NoSQL databases, was unsuited for testing at the highest volumes. 
It provided limited support for scaling across multiple clients, and the code had 
design limitations which prevented meaningful tests from being run at the rate 
needed to fully load these servers. As part of this project, we altered and extend-
ed the YCSB tool and supporting scripts to overcome these limitations. We con-
tributed this back to the community, so that others can reproduce our results 
more easily. Details of our changes can be found in Appendix E.

© Copyright 2013, Lineate
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Database
Selection

For the test we selected 3 common open source NoSQL databases that are in 
widespread use: Cassandra, Couchbase, and MongoDB. We also included the 
commercial Aerospike database, which is proprietary and has had less exposure 
than the other databases, but seemed like an excellent candidate for the test 
because it specifically targets high-volume processing and is optimized for SSDs.

A brief description of the databases:
   1. Cassandra is a column family store operating under the auspices of the 
Apache Software Foundation. Initially developed at Facebook, its goals are avail-
ability and the ability to scale to a very large size. With flexible consistency 
models, its architecture is particularly conducive to write operations.
   2. Couchbase is the company formed by the merger of two databases, CouchDB 
and Membase. We tested both the 1.8 version, which is purely a distributed 
key-value store built around the hugely popular memcached cache, and the 2.0 
version, which was released during our benchmarking and adds secondary index 
support as well as performance improvements.
   3. MongoDB is different from the other products in that it is primarily a docu-
ment database. It has extensive support for a variety of different kinds of second-
ary indices, strong features around documenting and a very different approach to 
scaling and durability. We included it in this study because in our experience 
clients often consider it for similar kinds of applications.
   4. Aerospike is another key-value store with its origins in the ad tech space. A 
commercial product, it positions itself as the market leader in raw performance 
and was a natural candidate to see if those claims were justified.

A critical thing to note is that these databases are optimized for different things. 
For example, Couchbase and MongoDB are intended to run on hardware where 
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most of the working set is cached in RAM. Aerospike, in contrast, is optimized for 
direct writes to SSD. For durable writes, we would expect Aerospike to dominate 
the performance results. These databases all make different assumptions and 
take different approaches to consistency / availability tradeoffs. For example, 
Aerospike is intended for use with synchronous replication and write directly to 
disk, providing strong durability and consistency. Couchbase by default takes a 
different approach, maximizing throughput by putting data in RAM and persisting 
data to disk and updating replicas asynchronously (but still providing consistency 
by querying the data master). Cassandra’s consistency is tunable on a que-
ry-by-query basis. Our goal was to establish apples-to-apples comparisons as 
often as possible, but given the different database architectures, a fair amount of 
judgment went into each test. As a general rule, when in doubt, we relaxed con-
sistency or durability to provide the highest numbers within the rough confines of
each test.  It is impossible to list all the various configuration tradeoffs that can be 
made within this document, but we do list the configurations used in Appendix C. 
In the interest of full disclosure, we should point out that Lineate has strategic 
and/or commercial relationships with Aerospike and 10gen (the makers of Mon-
goDB) as well as other NoSQL vendors not included in this test. Whenever practi-
cal, we reached out to the vendors directly to confirm our choices of settings and 
resolve the bugs or problems we encountered. Both Aerospike and Couchbase 
provided YCSB plugins for their respective databases. We shared the performance 
results with Aerospike, Couchbase, and 10gen and incorporated their suggestions 
wherever possible. Aerospike sponsored the changes to YCSB, and rented the 
hardware to us. However, the system setup and systems administration, tools and 
software used, database configuration and setup, test methodology and design, 
and analysis were all done in a clean room fashion by our own engineers.
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most of the working set is cached in RAM. Aerospike, in contrast, is optimized for 
direct writes to SSD. For durable writes, we would expect Aerospike to dominate 
the performance results. These databases all make different assumptions and 
take different approaches to consistency / availability tradeoffs. For example, 
Aerospike is intended for use with synchronous replication and write directly to 
disk, providing strong durability and consistency. Couchbase by default takes a 
different approach, maximizing throughput by putting data in RAM and persisting 
data to disk and updating replicas asynchronously (but still providing consistency 
by querying the data master). Cassandra’s consistency is tunable on a que-
ry-by-query basis. Our goal was to establish apples-to-apples comparisons as 
often as possible, but given the different database architectures, a fair amount of 
judgment went into each test. As a general rule, when in doubt, we relaxed con-
sistency or durability to provide the highest numbers within the rough confines of
each test.  It is impossible to list all the various configuration tradeoffs that can be 
made within this document, but we do list the configurations used in Appendix C. 
In the interest of full disclosure, we should point out that Lineate has strategic 
and/or commercial relationships with Aerospike and 10gen (the makers of Mon-
goDB) as well as other NoSQL vendors not included in this test. Whenever practi-
cal, we reached out to the vendors directly to confirm our choices of settings and 
resolve the bugs or problems we encountered. Both Aerospike and Couchbase 
provided YCSB plugins for their respective databases. We shared the performance 
results with Aerospike, Couchbase, and 10gen and incorporated their suggestions 
wherever possible. Aerospike sponsored the changes to YCSB, and rented the 
hardware to us. However, the system setup and systems administration, tools and 
software used, database configuration and setup, test methodology and design, 
and analysis were all done in a clean room fashion by our own engineers.
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Methodology

As with the studies mentioned above, we used the YCSB client as the basis for all 
our tests. In order to preserve a common baseline as much as possible, we used 
the same kinds of data sets and record sizes as the other studies, but focused on a 
subset of workloads.

The overall approach was as follows:
1. Provision the hardware, operating systems, and environment using our best

estimates of what customers will run in their data centers and the best practices, 
where specified, of the various databases.

2. Install a database on the 4-node cluster. Configure it optimally and ensure it
is functioning as a single cluster.

3. Load a large dataset to disk (SSD) by inserting records individually but as fast
as possible.

4. Perform an overall throughput test to determine the maximum load the clus-
ter can handle, using the strongest durability guarantees practical.

5. Perform a stepwise load to determine how latency behaves as load increas-
es.

6. Repeat the test for both read-heavy and balanced read-write workloads.
7. Repeat steps 3-6 for a dataset that fits into RAM. This will provide higher

throughput at the expense of durability.

All the databases provide built-in sharding and replication, though not all support 
all replication modes. We set each database to store 2 copies of the data. When a 
node goes down, all data should be preserved in at least one place, and when it 
rejoins the cluster, it will take some time to get up to date copies of the replicated 
data. YCSB also includes functionality to support range scans to access groups of 
keys. We did not include such tests in our analysis because the feature is not uni-
versally supported across databases and is of questionable value in our opinion.

© Copyright 2013, Lineate
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Client & Workload
Description

Data Sets
The data was loaded to the database using the “load” phase of the YCSB tool. We 
used a replication factor of 2 for each database, so each record was stored two 
times.
   Record description: Each record consisted of 10 string fields, each 10 bytes long 
and with a 2-byte name
   Record size: 120 bytes
   Key descrip ion: The key was the word “user” followed by a 64-bit 
Fowler-Noll-Vo hash (in decimal notation)
   Key size: 23 bytes

The records were intentionally small to prevent network bandwidth from becom-
ing a factor in the tests.

Disk-backed Data Set
This data set was purposefully sized higher than the available RAM in the cluster 
(after considering replication). The idea was to force a significant chunk of opera-
tions to go to disk while using small enough records to ensure network bandwidth 
did not become a bottleneck.
   Number of records: 500 million
   Total amount of raw data: approximately 60GB 

For Couchbase, we used 200 million records instead. The reason for this was that 
Couchbase required 120 bytes of metadata per row to fit into RAM or it will not 
operate. The 200 million number was selected because it meant that RAM com-
fortably held the metadata but not the underlying dataset.

© Copyright 2013, Lineate
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Workloads

Workload A - Balanced

Workload B - Read Heavy

We ran two workloads: A balanced workload of reads and writes and a 
read-heavy workload. For each of the workloads, records were selected using a 
random Zipfian distribution. This distribution selects a small subset of popular 
records very frequently while the majority is hit infrequently with a roughly long 
tail. It is intended to approximate Internet usage where a large number of users 
are active at a given time and using a user’s random cookie ID as the key. For each 
of the workloads, we began each test by running a brief warm-up period to prime 
any caches. This was intended to start measurements against a system that is 
similar to a 2unning production system.

   Read operations: 50%          Update operations: 50%

   Read operations: 95%          Update operations: 5%
The number of operations actually performed depended on the throughput 
achievable on each test. Each workload performed a minimum of 10 million oper-
ations, but for very high-throughput scenarios we increased the load as high a 
200 million operations to ensure a reasonable test duration.

© Copyright 2013, Lineate

This data set was identical in structure but one-tenth the size. The goal was that 
most if not all of the data are kept in RAM, which is the preferred setup for 
Couchbase and MongoDB.
   Number of records: 50 million
   Total amount of raw data: approximately 6 GB

In-memory Data Set



10 of 52

Results

Test 1: Loading Data

Figure 1: Insert Throughput

The first step was to load each of the databases with the working set. We did this 
by running YCSB’s load routine for each of the full data sets. This performed a 
series of individual inserts as quickly as possible, using standard settings for each 
database. The primary goal of this was to prep the database for the read and 
update tests, and we used the relatively standard setting for each database in the 
load. The in-memory asynchronous numbers show that both Aersopike and 
Couchbase performed extremely well, all over 250 thousand inserts per second. 
Couchbase had a 10-15% advantage in that scenario. In the SSD scenario, neither 

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

SSD In Memory

Aerospike

Cassandra

MongoDB

Couchbase 1.8*

Couchbase 2.0*
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and asynchronous. Couchbase 1.8 was unable to load even the reduced data set.
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Couchbase 1.8 nor 2.0 was able to load the data synchronously, so we reverted to 
asynchronous operation to load the data for Couchbase 2.0. In that scenario, the 
load time was still excellent, though not easily comparable to Aerospike given the 
configuration differences. In both scenarios, both MongoDB and Cassandra lagged
far behind. Once the databases were loaded, we proceeded to the “meat” of our 
tests by measuring both the maximum throughput each database can achieve, 
and the average latency of each database at a given traffic level.

Test 2: Durable Scenario
We elected to start our throughput tests with a strong durability model, using a 
dataset that, when replicated, would be significantly larger than the server’s 
RAM. This test is intended to model usage for transactional data that requires 
strong durability guarantees. The goal was to provide the highest throughput 
given this hard requirement. We expected Aerospike to dominate this category 
since it is specifically optimized for SSDs, and expected Cassandra to do quite well 
for writes since it is a write-optimized and durable database. We expected Couch-
base and MongoDB to struggle since theses are both designed to keep the work-
ing set in memory. We ran the tests by using YCSB to perform each of the work-
loads as quickly as possible. We experimented with the proper number of client            
machines needed to maximize database load, and found that for most of the 
databases the ideal number of clients was eight, though Cassandra and MongoDB 
showed only minor performance gains after four clients. Before measuring, we 
performed an approximately 10 minute warm-up period (reading random 
records) to bring the database into a state that is not “at rest” and ensure any 
caches were properly primed. We then ran both the balanced Read/Write Work-
load at full capacity for 10 minutes (or until 10 million operations had been per-
formed, whichever is slower) followed by the Read Heavy Workload with the 
same parameters.

© Copyright 2013, Lineate
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For Aerospike, Cassandra, and Mon-
-

nously, providing the strongest possi-
ble durability . We were forced to 
exclude Couchbase from the official 
results for this test, since when run 
with either disk or replica durability 
on it was unable to complete the
test .

In short, Aerospike was the dominant 
performer in this test, showing dura-

faster than what the others could 
achieve. Even when others were set 

-
spike retained this huge advantage.

We then measured latency for vari-
ous traffic levels for each database. 
We tracked read and update latencies 
separately for each
workload. The graphs below show 
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3

2. In the case of Cassandra, we wrote both copies of the data, and read one, which 
matched the durability guarantees we wanted. A similar test of writing one copy 
and reading both had worse performance. Abandoning the durability/consis- 
tency guarantee did not significantly affect the Read-Heavy results, but improved 
performance on the Balanced Workload to about 44,000 operations per second. 
For MongoDB, replication was synchronous but we left journaling as asynchro-
nous.
3. When run in asynchronous mode (with the 200 million row dataset), Couchbase 
showed performance of about 41,000 disk operations per second, suggesting an 
upper bound in the synchronous case.



both the full set of results, plus a zoomed version to provide more clarity into cluster of data points at lower 
throughputs (lower is better).

13 of 52

Figures 3 a-d: Latency/Throughput Results - Balanced Workload 
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Figures 4a-d: Latency/Throughput Results - Read-Heavy Workload
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Aerospike maintained sub-millisecond latencies up to its highest load in all cases. MongoDB also had very 
good read performance that trails off as it approaches maximum capacity, and Cassandra had consistent write 
latency while read latency increases linearly.

Both showed a significant drop in performance as they get saturated.

Again Couchbase numbers are excluded, but for smaller disk-bound data sets we witnessed linearly increasing 
latency for the balanced workload, and sub-millisecond performance for reads.
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Test 3: Fast Scenario
After getting the durable numbers, we cleared the databases and ran the 
same tests again, this time with a dataset that was able to fit into RAM and 
with asynchronous replication. The goal of this test was to show the maximal 
performance that these databases could achieve, when liberated from the 
requirement of having durable data. All the databases in this test were config-
ured to store the entire working set in memory and persist to disk and
replicas as soon as it became available. We expected this to be a test where 
Couchbase would shine, since its default setup is designed to accept requests 
as quickly as memcached, and persist them asynchronously.

The client setups were identical to those in Test 2. 
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Figure 5: Maximum Throughput - In Memory Data Set

In this scenario, Couchbase was the fastest performer for the balanced work-
load by about 10%, whereas Aerospike outperformed Couchbase by about 
40% on the read-heavy workload. Both of these systems demonstrated truly 
impressive performance, on the order of half a million to a million operations 
per second across the board.

MongoDB and Cassandra were an order of magnitude slower - both were configured with enough RAM cache 
to contain the full working set. Cassandra’s cache hit ratio was about 35% for the balanced workload and 70% 
for the read-heavy workload.

The latency tests were conducted in the same manner as before.
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Figures 6a - 6d: Latency/Throughput Results (Balanced Workload)
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Figures 7a - 7d: Latency Throughput Results (Read Heavy Workload)
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Both Couchbase and Aerospike maintained sub-millisecond latencies up to their highest performance. For 
MongoDB, latency degraded on writes but stayed consistent on reads, and the converse was true for
Cassandra (which is optimized for writes). 
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Conclusion
The most striking result was the raw  throughput number Aerospike was able to 
achieve even while committing to disk across multiple nodes. We expected it to 
shine in this case, but maintaining a speed of 200 thousand operations per 
second with these strong guarantees put it far ahead of its nearest competitor 
and at speeds we would not normally associate with ACID semantics.

When the entire data set fit into RAM and the durability guarantees are
weakened, the results showed both Couchbase and Aerospike in a near-tie in 
terms of performance. Couchbase slightly outperformed Aerospike for the bal-
anced read-write workload, and Aerospike somewhat more significantly outper-
formed Couchbase for the read-heavy workload. Both posted excellent numbers 
when durability is not a major concern. Of course, a lack of durability opens the
question of how the cluster recovers in the event of a failure. We plan to answer 
this in our next report.

Both Cassandra and MongoDB lagged far behind the others, but it should be 
pointed out that both offer a significantly larger feature set than Aerospike and 
Couchbase 1.8. This test measured raw key-value performance, and the key-value 
stores were the ones that shined. Quantifying secondary indexes and other fea-
tures will be done in a future report.

One thing to consider even in the asynchronous model is how an organization 
might scale out their data storage. We viewed the SSD based test as important 
since SSDs have higher densities and lower per-gigabyte costs than RAM. As such, 
it should be possible to scale our much larger data sets on fewer nodes, which is 
clearly valuable when talking about very large amounts of data. An alternative 
scaling model would be provisioning larger numbers of (possibly virtualized) 
RAM-based machines and ensuring that the working set will always fit into
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memory. When talking about data sets of 6GB or 60GB as we do in this report, 
this is clearly a viable scaling option, and one that can offer higher throughput. At 
truly large data sets, this scaling approach becomes more questionable.

When scaling while using more instances of RAM-backed storage, one should 
consider the recovery aspect of the solution. More nodes implies a higher rate of 
node failures, so recovery becomes more important. If recovery can be managed 
effectively, a RAM-based cloud-oriented approach to storage might be a viable 
way to scale. However, if writes to disks and replicas are done asynchronously, 
recoverability can be problematic. A future report will compare database recover-
ability and virtualized performance.

Many other considerations besides raw performance have been swept under the 
rug in this study. For example, all the databases except Couchbase 1.8 offer cross 
datacenter replication, which is likely a consideration when deciding between 
consistency, response time, and durability

As with any benchmarking tests, the results should be taken with the usual
caveats. Running application loads in bulk against a database is merely a proxy for 
how they will be used in real life.

Is this a fair test?
It can certainly be argued the test was set up to achieve certain results. Since 
Aerospike was specifically written to be explicitly optimized for SSDs, it is not 
surprising that a test against raw SSD hardware would give it the best results. 
However, the need for a high-performance key value store is a real one, and the 
assumption that companies looking for maximal performance in such scenarios 
would invest in servers with solid-state storage seems sound. For
applications in the space we are considering, we believe running the tests on such 
hardware is reasonable, and the test is a rough approximation of similar applica-
tions we’ve built. It is also important to point out that MongoDB, Cassandra, and 
Couchbase 2.0 have much broader functionality than what we test. In particular, 
they have secondary indices that allow querying of data by field instead of simply 
by key, and allow the databases to be used in many kinds of use cases that are 
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currently not viable for Aerospike. A raw benchmark test here is not the best way 
to illustrate their functionality. Each of these databases has clear use cases that 
are not illustrated at all by a raw key-value performance test. In particular, 10gen 
explicitly warns against benchmark tests as a way to describe MongoDB, and we 
have used MongoDB in production with very good results for many projects that 
are more document-oriented and less geared towards maximal transaction
volumes.

Future tests
This benchmark was the first of several tests we plan to run to more accurately 
categorize the NoSQL landscape. We started with raw key-value performance 
because it was relatively easy to measure and is a very real use case that we regu-
larly encounter. However, there are several other dimensions we plan to analyze 
in the upcoming weeks and months, including:
   1. Recovery - These databases vary considerably in how well they tolerate and 
recover from node failures. We are in the process of quantifying this for future 
publication.
   2 Burstability - How the databases perform when data starts to exceed capacity 
planning. For example, a RAM-based cluster might perform extremely well, but 
when the working set grows too large suddenly, how will performance be
impacted? Different databases have different approaches to handling this
(evicting records, slowing performance, etc.)
and quantifying this would shed light on expected system stability.
   3. Cloud support - A major reason to choose a NoSQL solution is to offer hori-
zontal scalability, and the cloud is a natural choice for this. We elected to start 
with bare metal hardware because such hardware can be expected to deliver the 
highest raw
performance. However, a test using High IO cloud instances would be a valuable 
follow up.
   4. Secondary indexes - Such a test can be quite complex, as queries across sec-
ondary indexes will hit every node in the cluster and may result in complex query 
execution
paths. However, a large number of applications need more than key-value stor-
age, and a way to quantify secondary index capabilities and performance can 
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provide insight into entirely new classes of applications.
   5. Other workload distributions - YCSB comes with a number of data set distri-
butions, and we weren’t particularly happy with any of them. The Zipfian distribu-
tion seems to be very heavily weighted to a few keys, but the random distribution 
doesn’t seem like it would model real-world usage. We preferred to conduct 
in-depth tests around a single distribution instead of adding more and more vari-
ables, potentially confusing the results. In the future, we plan to measure the 
impact of data distributions more carefully
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Appendix A:
Hardware

Database Servers
We ran the tests on four server machines. Each machine had the following specs:
   CPU: 8 x Intel(R) Xeon(R)                             CPUE5-2665 0 @ 2.40GHz
   RAM: 31 GB
   SSD: 4 x INTEL SSDSA2CW120G3, 120 GB full capacity, 94 GB over-provisioned 
size
   HDD: ST500NM0011, 500 GB, SATA III, 7200 RPM

Each server had all five databases installed, but only one running at any given 
time. Each database used four SSDs simultaneously to store its data. Aerospike 
accessed the disk directly; the others accessed the data via software RAID0. For 
all databases, the data were distributed across all four SSDs. Other disks were 
used to some small capacity on individual tests, but only in ancillary roles. For 
example, we tested three ways of storing Cassandra’s commit log, as described in 
Appendix C. The SSDs for Cassandra, both Couchbase versions and MongoDB 
were formatted as ext4. The file systems are mounted with the “noatime” option 
(the inode access times are not updated). While the RAID chunk size was left at 
the default (521k), the “readahead” parameter was changed to 32 sectors for the 
whole RAID device and to 8 sectors for each SSD. Aerospike was tested in two 
different configurations: by using the disk as a block device, and by storing the 
data in RAM. All the disks were overprovisioned, leaving 21% of disk space empty. 
This is consistent with recommendations made by 10gen and Aerospike (the 
other vendors had no documentation around this). Overprovisioning can be done 
simply by leaving 21% of the disk unpartitioned. In our case, we used the hdparm 
command as described in Aerospike guide.
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Disks were initialized by wiping out the data directory (for Cassandra, MongoDB, 
Couchbase) or by zeroing out the block from /dev/zero (for Aerospike). The 
system I/O scheduler was set to be NOOP.

The rotational drive was used to store logs and binaries. Network was 1Gbps Eth-
ernet. Higher network bandwidth would be particularly valuable in the case of 
Couchbase.

Client Machines
We used up to ten client machines to generate load to the database with YCSB. 
Each had the following specs:
   CPU: 4 x Intel(R) Core(TM) i5-3470    CPU @ 3.20GHz
   RAM: 3.7 GB
   HDD: ST500DM002-1BD142, 500 GB, SATA III, 7200 RPM
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Database Servers

Client Machines

Each of the database server machines had the following software configured:
1. OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
2. JDK: Oracle JDK 7u9
3. Databases:
   - Aerospike 2.1.2-100-g35e99a9
   - Couchbase 1.8.1
   - Couchbase 2.0.0
   - Cassandra 1.1.7
   - MongoDB 2.2.2

1. OS: Ubuntu Server 12.04.1 64-bit (Linux kernel v.3.2.0)
2. JDK: OpenJDK 6.0u24
3. Customized YCSB forked from the commit on September 10, 2012
(Aerospike guide)
   - Couchbase plugin downloaded from Aerospike guide.
   - Aerospike plugin provided by Aerospike
   - Cassandra plugin from YCSB distribution
   - MongoDB plugin from YCSB distribution, but with the following
customizations:
   - Upgraded to use MongoDB 2.10.1 drivers
   - Additional code to enable routing read requests to secondary nodes
   - See Appendix E for information on the changes we made as well as the
location of the source code.
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Cassandra
Cassandra 1.1.7 was installed as a four-node cluster. We ran the tests using 3 dif-
ferent disc configurations. In the first variant, three dedicated SSD disks on each 
machine were formatted as ext4 and used to store the data. Commit logs were 
written to a separate SSD disk for performance reasons. (Since Cassandra is opti-
mized for writes, the first thing it will do is append writes to a commit log, persist-
ing data to the main disk in batches. We placed these on separate disks to reduce 
possible contention between these operations.). In the second variant, four SSD 
disks were used for data and one HDD disk was used for commit logs. In the third 
variant, four SSD disks were used both for data and for the commit log. The third 
configuration gave the best results.

Unlike the other databases tested, Cassandra uses a ring topology in its configura-
tion and the nodes need to be made aware of “seed” nodes (who help them join 
the ring) explicitly. At configuration time, it was necessary to specify which tokens 
map to which instance.

Other settings
1. ntpd was running on all machines.
2.  Swap space was set to the size of main memory and left on the rotational disk
3. The maximum number of open files for all users was increased from 1024 to 
16384 (ulimit nofiles)
4. Network cards with multiqueue support were installed: Intel Corporation I350 
Gigabit Network Connection, and the igb network driver was used
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              "0": 0,
              "1": 425352958651173079329218259 28971026432,
              "2": 850705917302346158658436518 57942052864,
              "3": 127605887595351923798765477 786913079296
      }
}

   MAX_HEAP_SIZE="15G"
   HEAP_NEWSIZE="800M"

By default, the row cache for Cassandra is disabled; we enabled it and set it to its 
max size: 10GB per node. The cache is not in the Java heap space. Enabling the 

effect on latency. Even on inmemory tests, the cache hits did not exceed 70%.

. 

Cassandra Cassandra

Cassandra Cassandra

Ring YCSB
Client

DB Plugin

YCSB
Client

DB Plugin

 to create the 

$ ./tokentoolv2.py 4
{
      "0": {

Cassandra has tunable consistency levels. Each read or write can explicitly state 

benchmark project, we used the weakest and fastest consistency level (ONE) 
for both reads and writes4.

conf/cassandra-env.sh):

4

https://raw.github.com/riptano/ComboAMI/2.2/tokentoolv2.py
http://www.datastax.com/docs/1.1/dml/data_consistency#tunable-consistency


              "0": 0,
              "1": 425352958651173079329218259 28971026432,
              "2": 850705917302346158658436518 57942052864,
              "3": 127605887595351923798765477 786913079296
      }
}
Cassandra has tunable consistency levels. Each read or write can explicitly state 
what level of database consistency is needed for that operation. Since this was a 
benchmark project, we used the weakest and fastest consistency level (ONE) for 
both reads and writes⁸.

The JVM used to run Cassandra was initialized with the following settings (from 
conf/cassandra-env.sh):
   MAX_HEAP_SIZE="15G"
   HEAP_NEWSIZE="800M"

By default, the row cache for Cassandra is disabled; we enabled it and set it to its 
max size: 10GB per node. The cache is not in the Java heap space. Enabling the 
cache dramatically increased the read throughput – but did not have a significant 
effect on latency. Even on inmemory tests, the cache hits did not exceed 70%.
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Variant 2
4 SSDs for data + 1 HDD for commitlog
   mdadm --create --verbose /dev/md0 --level=0 --raid-devices=4 /dev/sdb /dev/sdc /dev/sdd/dev/s-
de
   mkfs.ext4 /dev/md0
   mkdir /mnt/raid
   mount /dev/md0 /mnt/raid
   mkdir /mnt/log
Inserts:    69k ops/sec
Heavy Update:    46k ops/sec
Mostly Read:    30k ops/sec

As with all the databases, we used a replication factor of two. Other major set-
tings used were:
   Partitioner:    RandomPartitioner
   Initial token space:    2^127 / 4
   Memtable space:    4Gb
   Concurrent reads:   64
   Concurrent writes:   64
   Compression:    SnappyCompressor
   Commit log sync:    10,000 ms
   
The disc configurations for each variant follow:

Variant 1
3 SSD for data + 1 SSD for commitlog
   mdadm --create --verbose /dev/md0 --level=0 --raid-devices=3 /dev/sdb /dev/sdc /dev/sdd
   mkfs.ext4 /dev/md0
   mkdir /mnt/raid
   mount /dev/md0 /mnt/raid
   mkfs.ext4 /dev/sde
   mkdir /mnt/log
   mount /dev/sde /mnt/log
Inserts:    72k ops/sec
Heavy Update:   46k ops/sec
Mostly Read:    34k ops/sec
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Variant 3
4 SSDs for data and commitlog   
   Inserts:    78k ops/sec
   Heavy Update:     45k ops/sec
   Mostly Read:    32k ops/sec

And below are the settings for conf/cassandra.yaml:
   cluster_name: 'Test Cluster'
   initial_token: 0
   hinted_handoff_enabled: true
   max_hint_window_in_ms: 3600000 # one hour
   hinted_handoff_throttle_delay_in_ms: 1
   authenticator: org.apache.cassandra.auth.AllowAllAuthenticator
   authority: org.apache.cassandra.auth.AllowAllAuthority
   partitioner: org.apache.cassandra.dht.RandomPartitioner
   data_file_directories:
 - /mnt/raid/cassandra/data
   commitlog_directory: /mnt/raid/cassandra/commitlog
   key_cache_size_in_mb:
   key_cache_save_period: 14400
   row_cache_size_in_mb: 10240
   row_cache_save_period: 0
   row_cache_provider: SerializingCacheProvider
   saved_caches_directory: /var/lib/cassandra/saved_caches
   commitlog_sync: periodic
   commitlog_sync_period_in_ms: 10000
   commitlog_segment_size_in_mb: 32
   seed_provider:
         - class_name: org.apache.cassandra.loca
         tor.SimpleSeedProvider
         parameters:
                  - seeds: "e1.citrusleaf.local"
   flush_largest_memtables_at: 0.75
   reduce_cache_sizes_at: 0.85
   reduce_cache_capacity_to: 0.6
   concurrent_reads: 64
   concurrent_writes: 64
   memtable_flush_queue_size: 4
   trickle_fsync: false
   trickle_fsync_interval_in_kb: 10240
   storage_port: 7000



   Read operations: 95%          Update operations: 5%
The number of operations actually performed depended on the throughput 
achievable on each test. Each workload performed a minimum of 10 million oper-
ations, but for very high-throughput scenarios we increased the load as high a 
200 million operations to ensure a reasonable test duration.
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   ssl_storage_port: 7001
   listen_address: e1.citrusleaf.local
   rpc_address: e1.citrusleaf.local
   rpc_port: 9160
   rpc_keepalive: true
   rpc_server_type: sync
   thrift_framed_transport_size_in_mb: 15
   thrift_max_message_length_in_mb: 16
   incremental_backups: false
   snapshot_before_compaction: false
   auto_snapshot: true
   column_index_size_in_kb: 64
   in_memory_compaction_limit_in_mb: 64
   multithreaded_compaction: false

The database was initialized using the following commands:
   CREATE KEYSPACE usertable
   WITH placement_strategy = 'org.apache.cas
sandra.locator.SimpleStrategy'
   AND strategy_options = {replication_factor:2};
   use usertable;
   CREATE COLUMN FAMILY data
   WITH comparator = UTF8Type
   AND key_validation_class = UTF8Type
   AND caching = all;

Couchbase 1.8
Couchbase 1.8.1 was installed on four server nodes are configured as a cluster. 
Four SSDs accessible via software RAID0 formatted as ext4 were used to store the 
data.

One thing to note is that Couchbase defines its replication factor as “Number of 
replica (backup) copies)”, so a setting of 1 corresponds to our replication factor of 
2 for other databases.
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Below are the settings for couchbase-cli server-info:
{
   "availableStorage": {
      "hdd": [
            {
                "path": "/",
                "sizeKBytes": 447427440,
                "usagePercent": 6
            },
            {
                "path": "/dev",
                "sizeKBytes": 16451884,
                "usagePercent": 1
            },

            {
                "path": "/run",
                "sizeKBytes": 6584384,
                "usagePercent": 1
            },
            {
                "path": "/run/lock",
                "sizeKBytes": 5120,
                "usagePercent": 0
            },
            {
                "path": "/run/shm",
                "sizeKBytes": 16460960,
                "usagePercent": 0
            },

Couchbase Couchbase

Couchbase Couchbase

Cluster YCSB
Client

DB Plugin

YCSB
Client

DB Plugin
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            {
                "path": "/boot",
                "sizeKBytes": 233191,
                "usagePercent": 33
            },
            {
                "path": "/mnt/raid",
                "sizeKBytes": 364603720,
                "usagePercent": 1
            }
        ]
    },
    "clusterCompatibility": 1,
    "clusterMembership": "active",
    "hostname": "192.168.109.168:8091",
    "interestingStats": {
       "curr_items": 0,
        "curr_items_tot": 0,
        "vb_replica_curr_items": 0
    },
    "mcdMemoryAllocated": 25720,
    "mcdMemoryReserved": 25720,
    "memoryFree": 22558875648.0,
    "memoryQuota": 25720,
    "memoryTotal": 33712046080.0,
    "os": "x86_64
    -unknown
    -linux
    -gnu",
    "otpCookie": "opztzvwywxeczcji",
    "otpNode": "ns_1@192.168.109.168",
    "ports": {
       "direct": 11210,
       "proxy": 11211
    },
    "status": "healthy",
    "storage": {
       "hdd": [
          {
             "path": "/mnt/raid/couchbase",
             "quotaMb": "none",
             "state": "ok"
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          }
       ],
       "ssd": []
    },
    "storageTotals": {
       "hdd": {
             "free": 369620667188.0,
             "quotaTotal": 373354209280.0,
             "total": 373354209280.0,
             "used": 3733542092.0,
             "usedByData": 7281024
    },
    "ram": {
       "quotaTotal": 26969374720.0,
       "total": 33712046080.0,
       "used": 11153170432.0,
       "usedByData": 55127464
    }
    },
   "systemStats": {
       "cpu_utilization_rate": 0.4987531172069 8257,
       "swap_total": 34326179840.0,
       "swap_used": 6639616
    },
    "uptime": "1782",
    "version": "1.8.1-937-rel-community"
}

The couchbase-cli bucket-list was left at the default settings:
    test
          bucketType: membase
          authType: sasl
          saslPassword:
          numReplicas: 1
          ramQuota: 1.0762584064e+11
          ramUsed: 53101028392.0

Here is the configuration used to set up the db schema.
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Couchbase 1.8
Couchbase 2.0 was officially released 
on December 12, 2012. As with Couchbase 1.8, it was installed on four server 
nodes are configured as a cluster, and four SSDs accessible via software RAID0 
formatted as ext4 were used to store the data.

Below are the settings for couchbase-cli server-info:
   {
       "availableStorage": {
          "hdd": [
             {
                "path": "/",
                "sizeKBytes": 447427440,
                "usagePercent": 9
             },
             {
                "path": "/dev",
                "sizeKBytes": 16451884,
                "usagePercent": 1
             },
             {
                "path": "/run",
                "sizeKBytes": 6584384,
                "usagePercent": 1
             },
             {
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                "path": "/run/lock",
                "sizeKBytes": 5120,
                "usagePercent": 0
             },
             {
                "path": "/run/shm",
                "sizeKBytes": 16460960,
                "usagePercent": 0
             },
             {
                "path": "/boot",
                "sizeKBytes": 233191,
                "usagePercent": 33
             },
             {
                "path": "/mnt/raid",
                "sizeKBytes": 364603720,
                "usagePercent": 52
             }
         ]
     },
     "clusterCompatibility": 131072,
     "clusterMembership": "active",
     "couchApiBase":    
     "http://192.168.109.168:8092/",
     "hostname": "192.168.109.168:8091",
     "interestingStats": {
          "couch_docs_actual_disk_size": 9205562348,
          "couch_docs_data_size": 6887104963,
          "couch_views_actual_disk_size": 0,
          "couch_views_data_size": 0,
          "curr_items": 12506364,
          "curr_items_tot": 25003344,
          "mem_used": 7481749880,
          "vb_replica_curr_items": 12496980
      },
      "mcdMemoryAllocated": 25720,
      "mcdMemoryReserved": 25720,
      "memoryFree": 566579200,
      "memoryQuota": 25720,
      "memoryTotal": 33712046080,
      "os": "x86_64-unknown-linux-gnu",



36 of 52© Copyright 2013, Lineate

      "otpCookie": "qdfyjoucywviqpah",
      "otpNode": "ns_1@192.168.109.168",
      "ports": {
          "direct": 11210,
          "proxy": 11211
      },
      "status": "healthy",
      "storage": {
          "hdd": [
              {
                  "index_path": "/mnt/raid/couchbase/data",
                  "path": "/mnt/raid/couchbase/data",
                  "quotaMb": "none",
                  "state": "ok"
              }
          ],
          "ssd": []
      },
      "storageTotals": {
          "hdd": {
              "free": 179210020455,
              "quotaTotal": 373354209280,
              "total": 373354209280,
              "used": 194144188825,
              "usedByData": 9205562348
          },
          "ram": {
              "quotaTotal": 26969374720,
              "quotaUsed": 26969374720,
              "total": 33712046080,
              "used": 33145466880,
              "usedByData": 7481749880
          }
      },
      "systemStats": {
          "cpu_utilization_rate": 0.625782227784 7309,
          "swap_total": 34326179840,
          "swap_used": 15790080
      },
      "thisNode": true,
      "uptime": "15975",
      "version": "2.0.0-1976-rel-enterprise"
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   }

Here is the configuration used to set up the db schema.

Aerospike
Aerospike 2.1.2-100-g35e99a9 was used in a four node cluster. The free trial is a 
fully functional but time-limited database.

Unlike the other three databases, Aerospike uses the SSD natively as a block 
device when storing the data on discs. As with the other databases, we used four 
SSDs accessible via software RAID0 formatted as ext4, only instead of formatting 
it as ext4 we simply initialized the drives to all zeros:
         dd if=/dev/zero of=/dev/sdb bs=128k
The cluster heartbeat was configured to use multicast, not mesh.
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For the SSD tests, the  /etc/citrus

leaf/citrusleaf.conf we used is as follows:
   service {
               user root
               group root
               run-as-daemon
               transaction-queues 8
               transaction-threads-per-queue 3
               service-threads 8
               fabric-workers 24
               migrate-threads 1
               migrate-xmit-hwm 6
               migrate-xmit-lwm 1
               transaction-retry-ms 1000
               transaction-max-ms 1000
               transaction-pending-limit 200 # Max # of same-key transactions on queue
               ticker-interval 10
               nsup-period 120
               nsup-max-deletes 25000
               nsup-queue-hwm 2
               nsup-queue-lwm 1
               nsup-startup-evict true
               defrag-queue-hwm 20
               defrag-queue-lwm 5



39 of 52© Copyright 2013, Lineate

               defrag-queue-escape 10
               defrag-queue-priority 10
               proto-fd-max 15000
# Keep this less than 1024 so the server starts up even on low-end machines.
               paxos-single-replica-limit 1
 # Number of nodes where the replica count is
automatically reduced to 1.
               transaction-repeatable-read false
               pidfile /var/run/cld.pid
               trial-account-key P3NqitOnyXBfCb0Xd3vqmPwXj2M60TnanXtre3OEY3g
}
# Log configuration. Log to stderr by default. Log file must be an absolute path.
   logging {
               file /var/log/citrusleaf.log {
                     context any info
   #            context batch debug
   #            context rw detail
               }

   #          console {
   #            context any info
   #          }
   #
   }

   network {
               service {
                 address any                 
                 port 3000
                 reuse-address
               }

               heartbeat {
                 address 239.1.99.223
                 mode multicast
                 port 9918
                 interval 150
                 timeout 15
               }

               fabric {
                 address any
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port 3001
               }
               info {

address any
port 3003

               }
   }
   #namespace test {
   #            replication-factor 2
   #            storage-engine memory
   #}

   namespace test {
replication-factor 2
high-water-memory-pct 60
high-water-disk-pct 50
stop-writes-pct 90
memory-size 32212254720

# 30G
default-ttl 2592000

# default 30 days expiration

# Warning - legacy data in defined raw partition devices will be erased.
# These partitions must not be mounted by the filesystem.
   storage-engine device {

scheduler-mode noop
# for SSD

device /dev/sdb
# uncomment this line when correct device is used.

device /dev/sdc
device /dev/sdd
device /dev/sde
load-at-startup true
write-block-size 131072
defrag-period 120
defrag-lwm-pct 50
defrag-max-blocks 4000
defrag-startup-minimum 10

   }
}

These are mostly default values. The most important thing to consider here is the 
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proper settings for high-water-disk-pct. Like Cassandra, Aerospike optimizes writes by 
streaming them sequentially. The number of records was modified to fit into the 
watermark and avoid object evictions. The index fits into memory.

Also, we tested Aerospike storing the data in RAM. For the RAM tests, both the 
data and index were modified to fit into memory. We used the following
configuration file:
   service {
                 user root
                 group root
                 run-as-daemon
                 transaction-queues 8
                 transaction-threads-per-queue 3
                 service-threads 8
                 fabric-workers 24
                 migrate-threads 1
                 migrate-xmit-hwm 6
                 migrate-xmit-lwm 1
                 transaction-retry-ms 1000
                 transaction-max-ms 1000
                 transaction-pending-limit 200
# Max # of same-key transactions on queue
                 ticker-interval 10
                 nsup-period 120
                 nsup-max-deletes 25000
                 nsup-queue-hwm 2
                 nsup-queue-lwm 1
                 nsup-startup-evict true
                 defrag-queue-hwm 20
                 defrag-queue-lwm 5
                 defrag-queue-escape 10
                 defrag-queue-priority 10
                 proto-fd-max 15000
# Keep this less than 1024 so the server starts up even on low-end machines.
                 paxos-single-replica-limit 1
# Number of nodes where the replica count is
automatically reduced to 1.
                 transaction-repeatable-read false
                 pidfile /var/run/cld.pid
                 trial-account-key P3NqitOnyXBfCb0Xd3vqmPwXj2M60TnanXtre3OEY3g
}
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# Log configuration. Log to stderr by default. Log file must be an absolute path.
logging {
                 file /var/log/citrusleaf.log {
                             context any info
#                           context batch debug
#                           context rw detail
                 }

#               console {
#                           context any info
#               }
#
}

network {
                 service {
                             address any
                             port 3000
                             reuse-address
                 }

                 heartbeat {
                             address 239.1.99.223
                             mode multicast
                             port 9918
                             interval 150
                             timeout 15
                 }

                 fabric {
                             address any
                             port 3001
                 }

                 info {
                             address any
                             port 3003
                 }
}
#namespace test {
#               replication-factor 2
#               storage-engine memory
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#}
namespace test {
                 replication-factor 2
                 high-water-memory-pct 60
                 high-water-disk-pct 50
                 stop-writes-pct 70
                 memory-size 32212254720
# 30G
                 default-ttl 2592000
# default 30 days expiration

# Warning - legacy data in defined raw partition devices will be erased.
# These partitions must not be mounted by the filesystem.
storage-engine device {
                        file /var/data/citrusleaf/test.data
# data file name on rotational disk
                        filesize 137438953472
# 128G - use disk file up to 128G for
this namespace
                        data-in-memory true
# keep a copy of all data in memory always
                        defrag-period 120
# run defrag every 120 seconds
                        defrag-lwm-pct 45
# reclaim blocks that are less than 45% full
                        defrag-max-blocks 4000
# defragment at most 4000 disk blocks in each run
                        defrag-startup-minimum 10
# server needs at least 10% free space at startup
           }

}

We used MongoDB 2.2.2 to perform the tests. Four SSDs accessible via software 
RAID0 formatted as ext4 were used to store the data.

MongoDB has a different approach to clustering than the other databases. 
Instead of one monolithic cluster, MongoDB uses shards of replica sets. Each 
replica set is responsible for a set of keys, and contains a Primary which by default 

MongoDB
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handles all read and write requests, and one or more Secondaries which are used 
in recovery. In our setup, we divided the four node cluster into two replica sets, 

setup, but seemed suitable for a benchmarking test.

our setup, we placed the Arbiter on one of the client nodes, which is a poor deci-
-

quate to perform our failover tests. There is also a mongos process which lived on 

shards (replica sets).

   Server Node 1: mondod as Primary of Shard 1
   Server Node 2: mongod as Secondary of Shard 1
   Server Node 3: mongod as Primary of Shard 2
   Server Node 4: mongod as Secondary of Shard 2, mongod as Arbiter of Shard 2
   Client Nodes 1-8: YCSB, mongos
   Client Node 1-2:
   Client Node 3: mongod as Config server

The sharding key was the id generated by YCSB. Care must be taken when gener-

All write requests to MongoDB were done with writeConcern=normal. This caused 
writes to return successfully as soon as they are sent to the server (barring net-

guarantees, but we used it to maximize benchmark performance. All writes were 
done to the Primary nodes of replica-sets.

. 

config database is lost.

5
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The following steps were used to set up the cluster:

Initialization of Primary:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath
mongod.log --logappend --quiet --fork
rs.initiate( { _id: "shard1", members: [ { _id: 0, host : "e1.citrusleaf.local",
priority: 2 } ] } )

All read requests to MongoDB were done with readPreference=primaryPreferred. This 
meant that all read requests are also routed to the Primary. This may seem coun-
terintuitive, but in our tests performed better than routing reads to the second-
ary. The large amount of replication traffic being processed by the Secondary 
actually made it slower than the Primary in servicing read requests.

Note: The ability to set readPreference was not part of YCSB. We upgraded the Mon-
goDB driver from version 2.8.0 (from before the Mongo 2.2 release) to version 
2.10.1 and allowed the readPreference to be set as a configuration. The new code 
has been submitted for approval to the YCSB master.
NUMA note: these servers did not use NUMA.
Journals were located on the same RAID0 of SSDs as the data.
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Initialization of Secondary:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath
mongod.log --logappend --quiet --fork
rs.add("e2.citrusleaf.local") # run on primary

Initialization of Arbiter:
/opt/mongodb/bin/mongod --dbpath /mnt/raid/mongodb/data --replSet shard1 --logpath mon-
god.log --logappend --quiet --fork rs.addArb("r2.citrusleaf.local")

Start config server:
/opt/mongodb/bin/mongod --dbpath /mnt/mongodb/data --configsvr --logpath mongod.log --logap-
pend --quiet --fork
Start mongos:
/opt/mongodb/bin/mongos --configdb r5.citrusleaf.local --logpath mongos.log --logappend --quiet 
--fork

Initialize sharding:
sh.addShard("shard1/e1.citrusleaf.local")
sh.addShard("shard2/e3.citrusleaf.local")
sh.enableSharding("ycsb")
sh.shardCollection("ycsb.usertable", { "_id": 1 } )

Note: Dropping the collections causes the sharding data (saved on the config 
server) to be lost.
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Appendix D:
Test List

Load 50 Million (or 500 Million) records to 4 node cluster
Load the complete dataset into each database. This was done once and then 
reused for each of the following tests.

Metrics: throughput, average latency for insert operations.

Find maximum performance, Workload A
Run YCSB Workload A on the cluster without limiting the throughput artificially. A 
warm-up period of 10 minutes was used to prime the cache before metrics were 
gathered.

Metrics: throughput, average latency for read and update operations, cache hit 
ratio.

Find maximum performance, Workload B
Same as previous, but with workload B.

Find relationship of latency on throughput, Workload A
Run YCSB Workload A on the cluster while throttling throughput from YCSB. The 
throughput was increased until the it reaches the maximum found in the prior 
tests. The throughput levels tested were: 1k, 2k, 4k, 6k, 8k, 10k, 15k, 20k, 25k, 
30k, 35k, 40k, 45k, 50k, 75k, 100k, 125k, 150k, 175k, 200k, 250k, 300k, 350k, 
400k, 450k, but in some cases not every point was plotted to increase clarity.
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Find relationship of latency on throughput, Workload B
Same as previous, but with workload B.

Metrics: graphs of average latency vs. throughput for read and update
operations.

Number of operations for each throughput level: 10,000,000

Metrics: graphs of average latency vs. throughput for read and update
operations.
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Appendix E:
YCSB Customizations

Lineate modified YCSB to provide multi-client automation as well as a variety of 
enhancements to increase load, improve stability, and test consistency and dura-
bility models. The customized code can be found at
https://github.com/thumbtack-technology/ycsb. (It was taken from the sources 
committed to https://github.com/thumbtack-technology/ycsb on September 10, 
2012.)

YCSB includes clients for MongoDB and Cassandra by default. We modified the 
MongoDB driver to support different read preferences.

The Couchbase client code was written by Couchbase and was taken from 
https://github.com/thumbtack-technology/ycsb. We modified it to support syn-
chronous replication as a configuration option.

The Aerospike client code was provided by Aerospike. We worked with Aerospike 

Configuration
YCSB runs in 32 threads on each client machine. We found this number to be 
optimal. Four or eight client machines were run simultaneously for most of tests.

Java was run using default settings.

Automation
A set of Fabric commands were added to the base install to provide automation 
across multiple client machines to perform tasks such as:
   • Data loading
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List of Changes to Core YCSB
Upgrade of MongoDB client
We upgraded the MongoDB driver from version 2.8.0 (appeared before Mongo 
2.2 release) to version 2.10.1 and allow the readPreference to be set as a
configuration.

Also, now all the write errors are printed to stderr.

We added the ability to display operations’ result codes in more detail.

New configuration properties
mongodb.readPreference = primary|primaryPreferred|secondary|secondaryPreferred

Improvements of Aerospike client

YCSB has features to limit throughput, but uses the average throughput for the 
whole experiment. This causes peaks after node failures in failover tests. We
modified YCSB to keep the desired throughput on the same level, without peaks, 
by throttling based on the average throughput over the last 100 ms.

Throttling improvements

Output improvements
• Print current statistics to stderr every 2 secs instead of 10 secs
• Print intermediate statistics (identical to final) to stdout in every configured

• Running workloads
• Checking status
• Aggregating logs
• Startup / shutdown

Instructions how to use these automation tasks can be found in the source.

https://www.mongodb.com/docs/manual/applications/replication/#read-preference
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Field name
By default YCSB names the database record fields as “field” + a number. This new 
configuration option allows replacing the “field” prefix with something shorter. 
This was critical for producing record sizes small enough not to saturate network 
bandwidth at very high throughput levels.

New configuration properties
fieldnameprefix: string prefix for the field name (default: “field”)

time interval in order to avoid losing data on YCSB hangs or crashes
   • Print final statistics on YCSB process shutdown

New configuration properties
exportmeasurementsinterval: interval time for exporting measurements in out stream in
milliseconds (default: 1000)

Warm-up
This change forces YCSB to do some read operations before gathering statistics, in 
order to ensure the database is in a steady state. The length of the warm-up can 
be limited by number of operations or by time period. Note: This appears to 
cause some problems with Couchbase, so for the tests described in this report 
the warm-ups were done manually.

New configuration properties
warmupoperationcount: number of operations in warmup phase, if zero then don't warmup 
(default: 0)
warmupexecutiontime: execution time of warmup phase in milliseconds, if zero then don't warmup 
(default: 0)
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New configuration properties
    ignoreinserterrors: set to true to activate the new feature

Retries
Added the ability to retry failed operations. These retries are done within the 
same operation, so they don’t affect the number of operations reported (but do 
increase the reported latency of the operation, which we feel is fair). 

The original YCSB stops if it encounters an error on insert; this setting allows 
retries on insert as well.

New configuration properties
    readretrycount: number of retries if read fails, if zero then don't retry (default: 0)
    updateretrycount: number of retries if update fails, if zero then don't retry (default: 0)
    insertretrycount: number of retries if insert fails, if zero then don't retry (default: 0)
    retrydelay: delay between retries in milliseconds (default: 0)

Reconnections
If YCSB stops operations for some reason (e.g. cluster reconfiguration or other 
issues which causes the working threads to be blocked) we force it to reconnect 
to the DB (reinitializing the DB client). This prevents many kinds of YCSB-related 
problems with failover tests.

New configuration properties
    reconnectiontarget: the throughput value threshold when to do reconnect

Inserts with errors
The new configuration option was added to allow errors on inserts.

Usually YCSB stops when any operation fails on load phase. This setting makes it 
possible to ignore such errors and continue inserting. 
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